DOI QR코드

DOI QR Code

Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23

  • Saechow, Sukanya (Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Thammasittirong, Anon (Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Kittakoop, Prasat (Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy) ;
  • Prachya, Surasak (Chulabhorn Research Institute) ;
  • Thammasittirong, Sutticha Na-Ranong (Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus)
  • Received : 2018.04.16
  • Accepted : 2018.07.11
  • Published : 2018.09.28

Abstract

Bacterial strain BAS23 was isolated from rice field soil and identified as Bacillus amyloliquefaciens. Based on dual culture method results, the bacterium BAS23 exhibited potent in vitro inhibitory activity on mycelial growth against a broad range of dirty panicle fungal pathogens of rice (Curvularia lunata, Fusarium semitectum and Helminthosporium oryzae). Cell-free culture of BAS23 displayed a significant effect on germ tube elongation and mycelial growth. The highest dry weight reduction (%) values of C. lunata, H. oryzae and F. semitectum were 92.7%, 75.7%, and 68.9%, respectively. Analysis of electrospray ionization-mass spectrometry (ESI-MS) and $^1H$ nuclear magnetic resonance (NMR) spectroscopy revealed that the lipopeptides were iturin A with a C14 side chain (C14 iturinic acid), and a C15 side chain (C15 iturinic acid), which were produced by BAS23 when it was cultured in nutrient broth (NB) for 72 h at $30^{\circ}C$. BAS23, the efficient antagonistic bacterium, also possessed in vitro multiple traits for plant growth promotion and improved rice seedling growth. The results indicated that BAS23 represents a useful option either for biocontrol or as a plant growth-promoting agent.

Keywords

References

  1. Thavong P. 2002. Effect of dirty panicle disease on rice seed vigor. Agric. Res. J. 20: 111-120.
  2. Chen D, Liu X, Li C, Tian W, Shen Q, Shen B. 2014. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J. Environ. Manage 137: 120-127. https://doi.org/10.1016/j.jenvman.2014.01.043
  3. Pathak KV, Keharia H. 2013. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J. Appl. Microbiol. 114: 1300-1310. https://doi.org/10.1111/jam.12161
  4. Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, et al. 2011. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112: 159-174.
  5. Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H, et al. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9: e92486. https://doi.org/10.1371/journal.pone.0092486
  6. Raaijmakers JM, Vlami M, de Souza JT. 2002. Antibiotic production by bacterial biocontrol agents. Antonievan Leeuwenhoek 81: 537-547. https://doi.org/10.1023/A:1020501420831
  7. Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  8. Ait Kaki A, KacemChaouche N, Dehimat L, Milet A, Youcef-Ali M, Ongena M, et al. 2013. Biocontrol and plant growth promotion characterization of Bacillus species isolated from Calendula officinalis rhizosphere. Indian J. Microbiol. 53: 447-452. https://doi.org/10.1007/s12088-013-0395-y
  9. Souza Rd, Ambrosini A, Passaglia LMP. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38: 401-419. https://doi.org/10.1590/S1415-475738420150053
  10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  11. Mora I, Cabrefiga J, Montesinos E. 2015. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS One 10: e0127738. https://doi.org/10.1371/journal.pone.0127738
  12. Huang X, Lu Z, Bie X, Lu F, Zhao H, Yang S. 2007. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl. Microbiol. Biotechnol. 74: 454-461. https://doi.org/10.1007/s00253-006-0674-1
  13. Loper JE, Schroth MN. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Physiol. Biochem. 76: 386-389.
  14. Ruangsanka S. 2014. Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. ScienceAsia 40: 16-20. https://doi.org/10.2306/scienceasia1513-1874.2014.40.016
  15. Cappuccino, JC, Sherman, N. 1992. Microbiology: A Laboratory Manual, pp. 125-179. 3th Ed. Benjamin/cummings, New York.
  16. Tang J-S, Gao H, Hong K, Yu Y, Jiang M-M, Lin H-P, et al. 2007. Complete assignments of $^1H$ and $^{13}C$ NMR spectral data of nine surfactin isomers. Magn. Reson. Chem. 45: 792-796. https://doi.org/10.1002/mrc.2048
  17. Garbay-Jaureguiberry C, Roques BP, Delcambe L, Peypoux F, Michel G. 1978. NMR conformational study of iturin A, an antibiotic from Bacillus subtilis. FEBS. Lett. 93: 151-156. https://doi.org/10.1016/0014-5793(78)80825-4
  18. Yang H, Li X, Li X, Yu H, Shen Z. 2015. Identification of lipopeptide isomers by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal. Chem. 407: 2529-2542. https://doi.org/10.1007/s00216-015-8486-8
  19. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  20. Dunlap CA, Schisler DA, Price NP, Vaughn SF. 2011. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J. Microbiol. 49: 603-609. https://doi.org/10.1007/s12275-011-1044-y
  21. Singh AK, Rautela R, Cameotra SS. 2014. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 13: 67-67. https://doi.org/10.1186/1475-2859-13-67
  22. Hermann A, Guenther W, Guenther J. 1984. Iturin AL: structure and derivatives of a peptidolipid with a high content of C16-iturinic acids, Liebigs Ann. Chem. 5: 854-866.
  23. Akira I, Seiji T, Shigeo M, Akinori S. 1982. Structures of ${\beta}$-amino acids in antibiotics iturin A. Tetrahedron Lett. 23: 3065-3068. https://doi.org/10.1016/S0040-4039(00)87534-6
  24. Moran S, Rai DK, Clark BR, Murphy CD. 2009. Precursor-directed biosynthesis of fluorinated iturin A in Bacillus spp. Org. Biomol. Chem. 7: 644-646. https://doi.org/10.1039/b816345f
  25. Ji SH, Paul NC, Deng JX, Kim YS, Yun B-S, Yu SH. 2013. Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology 41: 234-242. https://doi.org/10.5941/MYCO.2013.41.4.234
  26. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, et al. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63. https://doi.org/10.1186/1475-2859-8-63
  27. Torres MJ, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol. Res. 182: 31-39. https://doi.org/10.1016/j.micres.2015.09.005
  28. Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R. 2014. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soil borne fungal pathogens through the alteration of antifungal compounds production. Front. Microbio. 5: 1-10.
  29. Liu X, Ren B, Gao H, Liu M, Dai H, Song F, et al. 2012. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One 7: e34430. https://doi.org/10.1371/journal.pone.0034430
  30. Islam MR, Jeong YT, Lee YS, Song CH. 2012. Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40: 59-66. https://doi.org/10.5941/MYCO.2012.40.1.059
  31. Nakano MM, Marahiel MA, Zuber P. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170: 5662-5668. https://doi.org/10.1128/jb.170.12.5662-5668.1988
  32. Tapi A, Chollet-Imbert M, Scherens B, Jacques P. 2010. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85: 1521-1531. https://doi.org/10.1007/s00253-009-2176-4
  33. Vessey JK. 2003. Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. https://doi.org/10.1023/A:1026037216893
  34. Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. 2016. Isolation and identification of plant growth-promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front. Microbio. 60: 1360.
  35. Khalid A, Arshad M, Zahir ZA. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x

Cited by

  1. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects vol.11, pp.10, 2018, https://doi.org/10.3390/toxins11100606
  2. Phosphate-Solubilizing Microbes and Biocontrol Agent for Plant Nutrition and Protection: Current Perspective vol.51, pp.5, 2020, https://doi.org/10.1080/00103624.2020.1729379
  3. Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-73222-w
  4. A Complete Genome Sequence of the Wood Stem Endophyte Bacillus velezensis BY6 Strain Possessing Plant Growth-Promoting and Antifungal Activities vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/3904120
  5. Purification and identification of a new antifungal dipeptide from Bacillus velezensis AR1 culture supernatant vol.77, pp.2, 2018, https://doi.org/10.1002/ps.6078
  6. Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya vol.52, pp.2, 2021, https://doi.org/10.1007/s42770-021-00442-1
  7. A Novel Biocontrol Strain Bacillus amyloliquefaciens FS6 for Excellent Control of Gray Mold and Seedling Diseases of Ginseng vol.105, pp.7, 2018, https://doi.org/10.1094/pdis-07-20-1593-re
  8. Effects of mixed culture fermentation of Bacillus amyloliquefaciens and Trichoderma longibrachiatum on its constituent strains and the biocontrol of tomato Fusarium wilt vol.132, pp.1, 2022, https://doi.org/10.1111/jam.15208