References
- Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. 2014. Microbial ecology and biogeochemistry of continental Antarctic soils. Front. Microbiol. 5: 154.
- Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA. 2015. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39: 203-221. https://doi.org/10.1093/femsre/fuu011
- Jones FT, Wineland MJ, Parsons JT, Hagler WM. 1996. Degradation of aflatoxin by poultry litter. Poult. Sci. 75: 52-58. https://doi.org/10.3382/ps.0750052
- Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. 1995. Increased cortical representation of the fingers of the left hand in string players. Science 270: 305-307. https://doi.org/10.1126/science.270.5234.305
- Belap J, Welter JR, Grimm, NB, Barger N, Ludwig JA. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86: 298-307. https://doi.org/10.1890/03-0567
- Housman DC, Yeager CM, Darby BJ, Sanford RL, Kuske CR, Neher DA, et al. 2007. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol. Biochem. 39: 2138-2149. https://doi.org/10.1016/j.soilbio.2007.03.015
- Geyer KM, Altrichter AE, Van Horn DJ, Takacs-Vesbach CD, Gooseff MN, Barrett JE. 2013. Environmental controls over bacterial communities in polar desert soils. Ecosphere 4: 127.
- Pajares S, Escalante AE, Noguez AM, Garcia-Oliva F, Martinez-Piedragil C, Cram SS, et al. 2016. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from CuatroCienegas, Mexico. PeerJ 4: e2459. https://doi.org/10.7717/peerj.2459
- Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. 2013. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340: 1574-1577. https://doi.org/10.1126/science.1236404
- Ben-David EA, Zaady E, Sher Y, Nejidat A. 2011. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses. FEMS Microbiol. Ecol. 76: 492-503. https://doi.org/10.1111/j.1574-6941.2011.01075.x
- Maestre FT, Escudero A, Martínez I, Guerrero C, Rubio A. 2005. Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct. Ecol. 19: 566-573. https://doi.org/10.1111/j.1365-2435.2005.01000.x
- Mohammadipanah F, Wink J. 2016.Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol. 6: 1541.
- Arocha-Garza HF, Castillo RC-D, Eguiarte LE, Souza V, Torre-Zavala SD. 2017. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 5: e3247. https://doi.org/10.7717/peerj.3247
- Peel MC, Finlayson BL, McMahonTA. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11: 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
- Shyampura RL, Sehgal J. 1995. Soils of Rajasthan for optimizing land use. Soils of India Series, NBSS Pub. 51.
- Bower CA, Reitemeier RF, Fireman R. 1972. Exchangeable cations of saline and alkaline soils. Soil Sci. 73: 251-257.
- Walkley A, Black JA. 1934. An estimation of digestion method for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Sci. 37: 29-38. https://doi.org/10.1097/00010694-193401000-00003
- Jackson ML. 1973. Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi.
- Keeney DR, Nelson DW. 1982. Nitrogen-inorganic forms, pp. 643-698. In Page AL, Miller RH, Keeney DR (eds.), Methods of soil analysis, Part 2, chemical and microbiological methods. ASA-SSSA, Madison, USA.
- Pamberton H. 1945. Estimation of total phosphorus. J Amer. Chem. Soc. 15: 383-395.
- Edgar RC. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
- Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. 2016. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12: e1004957. https://doi.org/10.1371/journal.pcbi.1004957
- Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, et al. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 5: 3-21. https://doi.org/10.1093/jpe/rtr044
- Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. 2012. METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40: W88-W95. https://doi.org/10.1093/nar/gks497
- Hackstadt AJ, Hess AM. 2009. Filtering for increased power for microarray data analysis. BMC Bioinformatics 10: 11. https://doi.org/10.1186/1471-2105-10-11
- Rao S, Chan Y, Bugler-Lacap DC, Bhatnagar A, Bhatnagar M, Stephen B. 2016. Pointing microbial diversity in soil, sand dune and rock substrates of the Thar monsoon desert, India. Indian J. Microbiol. 56: 35-45. https://doi.org/10.1007/s12088-015-0549-1
- Perry RA, Goodall DW. 2009. Arid Land Ecosystems: structure, functioning and management. Cambridge UK: Cambridge University Press
- Yasir M, Azhar EI, Khan I, Bibi F, Baabdullah R, Al-Zahrani IA, et al. 2015. Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol. 15: 65. https://doi.org/10.1186/s12866-015-0398-4
- Ronca S, Ramond J-B, Jones BE, Seely M, Cowan DA. 2015. Namib desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 6: 845.
- Wei STS, Lacap-Bugler DC, Lau MCY, Caruso T, Rao S, de los Rios A, et al. 2016. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Front Microbiol. 7: 1642.
- Le PT, Makhalanyane TP, Guerrero LD, Vikram S, Peer YV, Cowan DA. 2016. Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol. Evol. 8: 2737-2747. https://doi.org/10.1093/gbe/evw189
- Vikram S, Guerrero LD, Makhalanyane TP, Le PT, Seely M, Cowan DA. 2015. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ. Microbiol. 18: 1875-1888.
- Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, et al. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43. https://doi.org/10.1128/MMBR.00019-15
- Parrot D, Antony-Babu S, Intertaglia L, Grube M, Tomasi S, Suzuki MT. 2015. Littoral lichens as a novel source of potentially bioactive Actinobacteria. Sci. Rep. 5: 15839. https://doi.org/10.1038/srep15839
- Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, et al. 2015. Red soils harbour diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl. Environ. Microbiol. 81: 3086-3103. https://doi.org/10.1128/AEM.03859-14
- Jose PA, Jha B. 2017. Intertidal marine sediment harbours Actinobacteria with promising bioactive and biosynthetic potential. Sci. Rep. 7: 10041. https://doi.org/10.1038/s41598-017-09672-6
- Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. P. Natl. Acad. Sci. USA 112: 15684-15689.
- Lupatini M, Suleiman AK, Jacques RJ, Antoniolli ZI, Kuramae EE, de Oliveira Camargo FA, et al. 2013. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome. PLoS One 8: e76465. https://doi.org/10.1371/journal.pone.0076465
- Gorlach-Lira K, Coutinho HDM. 2007. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. Braz. J. Microbiol. 38: 135-141. https://doi.org/10.1590/S1517-83822007000100028
- Sharma R, Manda R, Gupta S, Kumar S, Kumar V. 2013. Isolation and characterization of osmotolerant bacteria from Thar desert of western Rajasthan (India). Rev. Biol. Trop. 61: 1551-1562.
- Bachar A, Soares MIM, Gillor O. 2012. The effect of resource islands on abundance and diversity of bacteria in arid soils. Microbial Ecol. 63: 694-700. https://doi.org/10.1007/s00248-011-9957-x
- Su LJ, Yang LL, Huang S, Su XQ, Li Y, Wang FQ, et al. 2016. Comparative gut microbiomes of four species representing the higher and the lower termites. J. Insect. Sci. 16: 97. https://doi.org/10.1093/jisesa/iew081
- Llorens-Mares T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, et al. 2015. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 9: 1648-1661. https://doi.org/10.1038/ismej.2014.254
Cited by
- Root Fungal Endophytes and Microbial Extracellular Enzyme Activities Show Patterned Responses in Tall Fescues under Drought Conditions vol.10, pp.8, 2018, https://doi.org/10.3390/agronomy10081076
- A Microbiome Analysis of Soil Samples from Three Abandoned Lead-Silver Mines in the Arizona Sonoran Desert vol.49, pp.1, 2018, https://doi.org/10.2181/036.049.0101
- Elucidation of microbial diversity and lignocellulolytic enzymes for the degradation of lignocellulosic biomass in the forest soils of Eastern and Western Ghats of Tamil Nadu, India vol.15, pp.1, 2021, https://doi.org/10.1002/bbb.2144
- Desert Environments Facilitate Unique Evolution of Biosynthetic Potential in Streptomyces vol.26, pp.3, 2018, https://doi.org/10.3390/molecules26030588