References
- Walsh K. 1970. Trypsinogens and trypsins of various species. Methods Enzymol. 19: 41-63.
- Ling Z, Ma T, Li J, Du G, Kang Z, Chen J. 2012. Functional expression of trypsin from Streptomyces griseus by Pichia pastoris. J. Ind. Microbiol. Biotechnol. 39: 1651-1662. https://doi.org/10.1007/s10295-012-1172-3
- Muhlia-Almazan A, Sanchez-Paz A, Garcia-Carreno FL. 2008. Invertebrate trypsins: a review. J. Comp. Physiol. 178: 655-672. https://doi.org/10.1007/s00360-008-0263-y
- Klomklao S. 2008. Digestive proteinases from marine organisms and their applications. Songklanakarin J. Sci. Technol. 30: 37-46.
- Zugno LA. 1992. The effect of trypsin on soaking of salt cured hides. J. Am. Leather Chem. Assoc. 78: 207-220.
- Torrissen K, Shearer K. 1992. Protein digestion, growth and food conversion in Atlantic salmon and Arctic charr with different trypsin-like isozyme patterns. J. Fish Biol. 41: 409-415. https://doi.org/10.1111/j.1095-8649.1992.tb02669.x
- Ling Z, Kang Z, Liu Y, Liu S, Chen J, Du G. 2014. Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J. Microbiol. Biotechnol. 30: 1819-1827. https://doi.org/10.1007/s11274-014-1608-1
- Ling Z, Liu Y, Teng S, Kang Z, Zhang J, Chen J, et al. 2013. Rational design of a novel propeptide for improving active production of Streptomyces griseus trypsin in Pichia pastoris. Appl. Environ. Microbiol. 79: 3851-3855. https://doi.org/10.1128/AEM.00376-13
- Zhang Y, Huang H, Yao X, Du G, Chen J, Kang Z. 2018. High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. Bioresour. Technol. 247: 81-87. https://doi.org/10.1016/j.biortech.2017.08.006
- Shu M, Shen W, Wang X, Wang F, Ma L, Zhai C. 2015. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Exp. Purif. 114: 149-155. https://doi.org/10.1016/j.pep.2015.06.014
- Jonsdottir G, Bjarnason JB, Gudmundsdottir A. 2004. Recombinant cold-adapted trypsin I from Atlantic cod-expression, purification, and identification. Protein Exp. Purif. 33: 110-122. https://doi.org/10.1016/j.pep.2003.09.012
- Palsdottir HM, Gudmundsdottir A. 2007. Expression and purification of a cold-adapted group III trypsin in Escherichia coli. Protein Exp. Purif. 51: 243-252. https://doi.org/10.1016/j.pep.2006.06.008
- Szilagyi L, Kenesi E, Katona G, Kaslik G, Juhasz G, Graf L. 2001. Comparative in vitro studies on native and recombinant human cationic trypsins cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. J. Biol. Chem. 276: 24574-24580. https://doi.org/10.1074/jbc.M011374200
- Chen J-M, Ferec C. 2000. Genes, cloned cDNAs, and proteins of human trypsinogens and pancreatitis-associated cationic trypsinogen mutations. Pancreas 21: 57-62. https://doi.org/10.1097/00006676-200007000-00052
- Hohenblum H, Vorauer-Uhl K, Katinger H, Mattanovich D. 2004. Bacterial expression and refolding of human trypsinogen. J. Biotechnol. 109: 3-11. https://doi.org/10.1016/j.jbiotec.2003.10.022
- Mosbah H, Horchani H, Sayari A, Gargouri Y. 2010. The insertion of (LK) residues at the N-terminus of Staphylococcus xylosus lipase affects its catalytic properties and its enantioselectivity. Process Biochem. 45: 777-785. https://doi.org/10.1016/j.procbio.2010.01.020
- Kim J-H, Hong S-K. 2008. Overproduction of bacterial trypsin in streptomyces-optimization for streptomyces griseus trypsin production by recombinant streptomyces. Microbiol. Biotechnol. Lett. 36: 28-33.
- Barata RA, Andrade MH, Rodrigues RD, Castro IM. 2002. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini. J. Biosci. Bioeng. 94: 304-308. https://doi.org/10.1016/S1389-1723(02)80168-2
- Rypniewski WR, Hastrup S, Betzel C, Dauter M, Dauter Z, Papendorf G, et al. 1993. The sequence and X-ray structure of the trypsin from Fusarium oxysporum. Protein Eng. 6: 341-348. https://doi.org/10.1093/protein/6.4.341
- Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26: 1781-1802. https://doi.org/10.1002/jcc.20289
-
Justin PG, Dennis AD. 1999. Cation-
${\pi}$ interactions in structural biology. Chem. Biochem. 96: 9459-9464. - Robert MS, Anthony AK, John LC. 1977. Mechanism of zymogen activation. 6: 177-193. https://doi.org/10.1146/annurev.bb.06.060177.001141
- Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, et al. 2011. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol. 408: 514-528. https://doi.org/10.1016/j.jmb.2011.02.053
- Purmonen M, Valjakka J, Takkinen K, Laitinen T, Rouvinen J. 2007. Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Eng. Des. Sel. 20: 551-559. https://doi.org/10.1093/protein/gzm056
- Yin J, Bowen D, Southerland WM. 2006. Barnase thermal titration via molecular dynamics simulations: detection of early denaturation sites. J. Mol. Graph. Model. 24: 233-243. https://doi.org/10.1016/j.jmgm.2005.08.011
- Priya Doss CG, Nagasundaram N, Chakraborty C, Chen L Zhu H. 2013. Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach. Hum. Genomics 7: 1-15. https://doi.org/10.1186/1479-7364-7-1
- Horchani H, Mosbah H, Salem NB, Gargouri Y, Sayari A. 2009. Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. J. Mol. Catal. B Enzym 56: 237-245. https://doi.org/10.1016/j.molcatb.2008.05.011
- Ouertani S, Frikha F, Horchani H, Ben Salem N, Gargouri Y, Sayari A. 2012. The insertion of four residues Isoleucines at the N-terminus of Staphylococcus simulans lipase affects its catalytic and biochemical properties. J. Mol. Catal. B Enzym 82: 1-7. https://doi.org/10.1016/j.molcatb.2012.05.015
-
Gromiha MM, Thomas S, Santhosh C. 2002. Role of cation-
${\pi}$ interactions to the stability of thermophilic proteins. Prep. Biochem. Biotechnol. 32: 355-362. https://doi.org/10.1081/PB-120015459 - Kraut J. 1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46: 331-358. https://doi.org/10.1146/annurev.bi.46.070177.001555
- Page MJ, Wong SL, Hewitt J, Strynadka NCJ, MacGillivray RTA. 2003. Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 9060-9066. https://doi.org/10.1021/bi0344230
- Nick Pace C, Scholtz JM, Grimsley GR. 2014. Forces stabilizing proteins. FEBS Lett. 588: 2177-2184. https://doi.org/10.1016/j.febslet.2014.05.006
- Zhongyuan L, Xianli X, Heng Z, Peilong Y, Huiying L, Junqi Z, et al. 2014. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases.
- Haiquan Y, Xinyao L, Long L, Jianghua L, Hyun-dong S, Rachel RC, et al. 2013. Fusion of an oligopeptide to the N terminus of an alkaline amylase from alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation. AEM 79: 3049-3058. https://doi.org/10.1128/AEM.03785-12