DOI QR코드

DOI QR Code

Efficient Isolation and Characterization of a Cellulase Hyperproducing Mutant Strain of Trichoderma reesei

  • Zou, Zongsheng (National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University) ;
  • Zhao, Yunying (National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University) ;
  • Zhang, Tingzhou (Zhejiang Cofine Biotech. Inc.) ;
  • Xu, Jiaxing (Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University) ;
  • He, Aiyong (Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University) ;
  • Deng, Yu (National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University)
  • Received : 2018.05.09
  • Accepted : 2018.07.27
  • Published : 2018.09.28

Abstract

A cellulase hyperproducing mutant strain, JNDY-13, was obtained using the ARTP mutation system and with Trichoderma reesei RUT-C30 as the parent strain. Whole-genome sequencing of JNDY-13 confirmed that 105 of the 653 SNPs were point mutations, 336 mutations were deletions and 165 were insertions. Moreover, 99 mutations were insertions and duplications. Among all the mutations, the one that occurred in the galactokinase gene might be related to the production of cellulases in T. reesei JNDY-13. Moreover, the up-regulation of cellulase and hemicellulase genes in JNDY-13 might contribute to higher cellulases production. Under optimal conditions, the highest cellulase activity by batch fermentation reached 4.35 U/ml, and the highest activity of fed-batch fermentation achieved was 5.40 U/ml.

Keywords

References

  1. Chang MC. 2007. Harnessing energy from plant biomass. Anal. Biochem. 11: 677-684.
  2. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, et al. 2012. A versatile toolkit for high-throughput functional genomics with Trichoderma reesei. Biotechn. Biofuels 5: 1. https://doi.org/10.1186/1754-6834-5-1
  3. Mandels M. 1985. Applications of cellulases. Biochem. Soc. Trans 13: 414-416. https://doi.org/10.1042/bst0130414
  4. Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L. 2000. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J. Biotechnol. 78: 39-48. https://doi.org/10.1016/S0168-1656(99)00232-1
  5. Mach RL, Zeilinger S. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60: 515-522. https://doi.org/10.1007/s00253-002-1162-x
  6. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560. https://doi.org/10.1038/nbt1403
  7. Christian D, Loreta GS, Sophie C, Theresa W, Mach RL, Mach-Aigner AR. 2013. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol. Biofuels 6: 62. https://doi.org/10.1186/1754-6834-6-62
  8. Peterson R, Nevalainen H. 2012. Trichoderma reesei RUT-C30--thirty years of strain improvement. Microbiology 158: 58-68. https://doi.org/10.1099/mic.0.054031-0
  9. Montenecourt BS, Eveleigh DE. 1977. Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl. Environ. Microbiol. 33: 178-183.
  10. Montenecourt BS, Eveleigh DE. 1977. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl. Environ. Microbiol. 34: 777-782.
  11. Montenecourt BS, Eveleigh DE. 1979. Selective screening methods for the isolation of high-yielding cellulase mutants of Trichoderma reesei. Adv. Chem. 289-301.
  12. Crom SL, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al. 2009. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 106: 16151-16156. https://doi.org/10.1073/pnas.0905848106
  13. Laroussi M. 2005. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2: 391-400. https://doi.org/10.1002/ppap.200400078
  14. Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, et al. 2015. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl. Microbiol. Biotechnol. 99: 5639-5646. https://doi.org/10.1007/s00253-015-6678-y
  15. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, et al. 2013. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One 8: e77046. https://doi.org/10.1371/journal.pone.0077046
  16. Li HP, Wang ZB, Ge N, Le PS, Wu H, Lu Y, et al. 2012. Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of Methylosinus trichosporium. IEEE T. Plasma Sci. 40: 2853-2860. https://doi.org/10.1109/TPS.2012.2213274
  17. Lu Y, Wang L, Ma K, Li G, Zhang C, Zhao H, et al. 2011. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem. Eng. J. 55: 17-22. https://doi.org/10.1016/j.bej.2011.02.020
  18. Dong XY, Xiu ZL, Li S, Hou YM, Zhang DJ, Ren CS. 2010. Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol. Lett. 32: 1245-1250. https://doi.org/10.1007/s10529-010-0284-y
  19. Li G, Li H-P, Wang L-Y, Wang S, Zhao H-X, Sun W-T, et al. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett. 92: 1460-1443.
  20. Gallo BJ, Andreotti R, Roche C, Ryu D, Mandels M. 1978. Cellulase production by a new mutant strain of Trichoderma reesei MCG77. Biotechnol. Bioeng. Symp. 8.
  21. Mandels M, Medeiros JE, Andreotti RE, Bissett FH. 1981. Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions. Biotechnol. Bioeng. 23: 2009-2026. https://doi.org/10.1002/bit.260230907
  22. Carder JH. 1986. Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal. Biochem. 153: 75-79. https://doi.org/10.1016/0003-2697(86)90063-1
  23. Ahamed A, Vermette P. 2009. Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production. Bioresour. Technol. 100: 5979-5987. https://doi.org/10.1016/j.biortech.2009.02.070
  24. Rapp P, Grote E, Wagner F. 1981. Formation and location of 1,4-beta-glucanases and 1,4-beta-glucosidases from Penicillium janthinellum. Appl. Environ. Microbiol. 41: 857-866.
  25. Kowalski ZE, Giesecke WH. 1986. A high performance liquid chromatographic method for the fluorimetric determination of lactose, galactose and glucose in normal and abnormal milk of cows. Onderstepoort J. Vet. Res. 53: 225-229.
  26. IUPAC. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  27. Fekete E, Karaffa L, Sandor E, Seiboth B, Biro S, Szentirmai A, et al. 2002. Regulation of formation of the intracellular beta-galactosidase activity of Aspergillus nidulans. Arch. Microbiol. 179: 7-14. https://doi.org/10.1007/s00203-002-0491-6
  28. Nagy Z, Szentirmai A, Biro SKT. 2001. ${\beta}$-Galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme. Protein Expr. Purif. 21: 24. https://doi.org/10.1006/prep.2000.1344
  29. Li Y, Liu C, Bai F, Zhao X. 2016. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour. Technol. 216: 503-510. https://doi.org/10.1016/j.biortech.2016.05.108
  30. Ivanova C, Ramoni J, Aouam T, Frischmann A, Seiboth B, Baker SE, et al. 2017. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnol. Biofuels 10: 209. https://doi.org/10.1186/s13068-017-0897-7
  31. Kong X, He A, Zhao J, Wu H, Ma J, Wei C, et al. 2016. Efficient acetone-butanol-ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation-pervaporation coupled process. Biochem. Eng. J. 105: 90-96. https://doi.org/10.1016/j.bej.2015.09.013
  32. Mane SP, Modise T, Sobral BW. 2011. Analysis of high-throughput sequencing data. Methods Mol. Biol. 678: 1-11.
  33. Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP. 2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol. Microbiol. 51: 1015-1025. https://doi.org/10.1046/j.1365-2958.2003.03901.x
  34. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunncoleman NS, et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988-31997. https://doi.org/10.1074/jbc.M304750200
  35. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Corrigendum: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560. https://doi.org/10.1038/nbt1403
  36. Li C, Yang Z, Zhang RHC, Zhang D, Chen S, Ma L. 2013. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J. Biotechnol. 168: 470-477. https://doi.org/10.1016/j.jbiotec.2013.10.003
  37. Genichi. 1982. System of experimental design: engineering methods to optimize quality and minimize costs. American Supplier Institute.
  38. Zhao Y, Cimpoia R, Liu Z, Guiot SR. 2011. Orthogonal optimization of Carboxydothermus hydrogenoformans culture medium for hydrogen production from carbon monoxide by biological water-gas shift reaction. Int. J. Hydrogen Energ. 36: 10655-10665. https://doi.org/10.1016/j.ijhydene.2011.05.134
  39. Callow NV, Ray CS, Kelbly MA, Ju LK. 2016. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 82: 8-14. https://doi.org/10.1016/j.enzmictec.2015.08.012
  40. Ahamed A, Vermette P. 2008. Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 40: 399-407. https://doi.org/10.1016/j.bej.2007.11.030
  41. Bhat MK, Bhat S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  42. Fritscher C, Messner R, Kubicek CP. 1990. Cellobiose metabolism and cellobiohydrolase I biosynthesis by Trichoderma reesei. Exp. Mycol. 14: 405-415. https://doi.org/10.1016/0147-5975(90)90063-Y
  43. Morikawa Y, Ohashi T, Mantani O, Okada H. 1995. Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 44: 106-111. https://doi.org/10.1007/BF00164488
  44. Muthuvelayudham R, Deiveegan S, Viruthagiri T. 2006. Triggering of cellulase protein production using cellulose with lactose by Trichoderma reesei. Asian J. Microbiol. Biotechnol. Environ. Sci. 8: 249-251.
  45. Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP. 2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol. Microbiol. 51: 1015-1025. https://doi.org/10.1046/j.1365-2958.2003.03901.x
  46. Hartl L, Kubicek CP, Seiboth B. 2007. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J. Biol. Chem. 282: 18654-18659. https://doi.org/10.1074/jbc.M700955200
  47. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. 2009. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels 2: 19. https://doi.org/10.1186/1754-6834-2-19
  48. Stricker AR, Grosstessnerhain K, Würleitner E, Mach RL. 2006. Xyr1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5: 2128-2137. https://doi.org/10.1128/EC.00211-06
  49. Ilmen M, Thrane C, Penttila M. 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet. 251: 451-460.
  50. Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. 2003. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol. Genet. Genomics 270: 46-55. https://doi.org/10.1007/s00438-003-0895-2
  51. Schmidtdannert C, Arnold FH. 1999. Directed evolution of industrial enzymes. Trends Biotechnol. 17: 135-136. https://doi.org/10.1016/S0167-7799(98)01283-9
  52. Zhang X, Li Y, Zhao X, Bai F. 2017. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour. Technol. 223: 317-322. https://doi.org/10.1016/j.biortech.2016.10.083
  53. Maurya DP, Singh D, Pratap D, Maurya JP. 2012. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol. 33: 5-8.
  54. Targonski Z, Pielecki J. 2010. Continuous semi-solid cultivation for the production of cellulase by Trichoderma reesei mutants using a polyurethane foam carrier and a liquid medium. Acta Biotechnol. 15: 289-296.

Cited by

  1. Molecular Characterization of an Endo-β-1,4-Glucanase, CelAJ93, from the Recently Isolated Marine Bacterium, Cellulophaga sp. J9-3 vol.9, pp.19, 2018, https://doi.org/10.3390/app9194061
  2. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  3. Improvement of vincamine production of endophytic fungus through inactivated protoplast fusion vol.23, pp.3, 2018, https://doi.org/10.1007/s10123-020-00117-1
  4. Transcription Analysis of Recombinant Trichoderma reesei HJ-48 to Compare the Molecular Basis for Fermentation of Glucose and Xylose vol.30, pp.10, 2018, https://doi.org/10.4014/jmb.2004.04007
  5. ARTP/EMS-combined multiple mutagenesis efficiently improved production of raw starch-degrading enzymes in Penicillium oxalicum and characterization of the enzyme-hyperproducing mutant vol.13, pp.None, 2018, https://doi.org/10.1186/s13068-020-01826-5
  6. Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis vol.31, pp.2, 2021, https://doi.org/10.4014/jmb.2011.11022