DOI QR코드

DOI QR Code

Quantitative evaluation of radar reflectivity and rainfall intensity relationship parameters uncertainty using Bayesian inference technique

Bayesian 추론기법을 활용한 레이더 반사도-강우강도 관계식 매개변수의 불확실성 정량적 평가

  • Kim, Tae-Jeong (Department of Civil Engineering, Chonbuk National University) ;
  • Park, Moon-Hyeong (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 김태정 (전북대학교 토목공학과) ;
  • 박문형 (한국건설기술연구원 국토보전연구본부) ;
  • 권현한 (전북대학교 토목공학과)
  • Received : 2018.07.20
  • Accepted : 2018.08.03
  • Published : 2018.09.30

Abstract

Recently, weather radar system has been widely used for effectively monitoring near real-time weather conditions. The radar rainfall estimates are generally relies on the Z-R equation that is an indirect approximation of the empirical relationship. In this regards, the bias in the radar rainfall estimates can be affected by spatial-temporal variations in the radar profile. This study evaluates the uncertainty of the Z-R relationship while considering the rainfall types in the process of estimating the parameters of the Z-R equation in the context of stochastic approach. The radar rainfall estimates based on the Bayesian inference technique appears to be effective in terms of reduction in bias for a given season. The derived Z-R equation using Bayesian model enables us to better represent the hydrological process in the rainfall-runoff model and provide a more reliable forecast.

최근 기후변동성으로 유발되는 불안정한 기상상태를 효과적으로 관측하고자 레이더가 도입되고 있다. 레이더는 경험식으로 산정된 Z-R 관계식을 통하여 레이더 강우량을 제시하게 된다. 이 과정에서 레이더 강우량은 필연적으로 지상에 도달하는 실제 강우량과는 정량적 오차가 발생하게 된다. 본 연구는 확률통계학적 방법론을 이용하여 Z-R 관계식 매개변수 산정과정에서 우리나라의 강우특성을 고려함과 동시에 Z-R 관계식 매개변수의 불확실성을 정량적으로 제시하고자 한다. 강우의 계절성을 고려하여 Z-R 관계식 매개변수를 추정하는 과정에서 Bayesian 추론기법을 도입하여 생산된 레이더 강우량은 기존의 Z-R 관계식에 비하여 개선된 통계적 효율기준을 제시하였다. 따라서 Bayesian 추론기법을 활용한 Z-R 관계식 매개변수 산정은 정량적으로 신뢰성 있는 고해상도 강우정보의 생산은 고도화된 수문해석 및 기상예보 지원을 가능케 할 것으로 판단된다.

Keywords

References

  1. Ahn, S. J., and Kim, J. G. (2003). "Estimation of Z-R relationships between radar reflectivity and rainfall rate." Journal of Korea Water Resources Association, Vol. 36, No. 1, pp. 13-21 (in Korean). https://doi.org/10.3741/JKWRA.2003.36.1.013
  2. Alfieri, L., Claps, P., and Laio, F. (2010). "Time-dependent ZR relationships for estimating rainfall fields from radar measurements." Natural Hazards and Earth System Sciences, Vol. 10, No. 1, pp. 149-158. https://doi.org/10.5194/nhess-10-149-2010
  3. Allen, R. J., and DeGaetano, A. T. (2005). "Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme areal precipitation amounts." Journal of Hydrology, Vol. 315, No. 1-4, pp. 203-219. https://doi.org/10.1016/j.jhydrol.2005.03.028
  4. Bae, D. H., Jeong, D. M., and Kim, G. S. (2007). "Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique." Hydrological Sciences Journal, Vol. 52, No. 1, pp. 99-113. https://doi.org/10.1623/hysj.52.1.99
  5. Bae, D. H., Tran, A. P., and Yoon, S. S. (2009). "A method to evaluate the radar rainfall accuracy for hydrological application." Journal of Korea Water Resources Association, Vol. 42, No. 12, pp. 1039-1052 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.12.1039
  6. Bellon, A., Lee, G. W., and Zawadzki, I. (2005). "Error statistics of VPR corrections in stratiform precipitation." Journal of Applied Meteorology, Vol. 44, No. 7, pp. 998-1015. https://doi.org/10.1175/JAM2253.1
  7. Berenguer, M., and Zawadzki, I. (2008). "A study of the error covariance matrix of radar rainfall estimates in stratiform rain." Weather and Forecasting, Vol. 23, No. 6, pp. 1085-1101. https://doi.org/10.1175/2008WAF2222134.1
  8. Blanchard, D. C. (1953). "Raindrop size-distribution in Hawaiian rains." Journal of Meteorology, Vol. 10, No. 6, pp. 457-473. https://doi.org/10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2
  9. Bringi, V. N., and Chandrasekar, V. (2001). Polarimetric Doppler weather radar: principles and applications. Cambridge University Press.
  10. Carlson, P. E., and Marshall, J. S. (1972). "Measurement of snowfall by radar." Journal of Applied Meteorology, Vol. 11, No. 3, pp. 494-500. https://doi.org/10.1175/1520-0450(1972)011<0494:MOSBR>2.0.CO;2
  11. Chen, Y., and Han, D. (2016). "Big data and hydroinformatics." Journal of Hydroinformatics, Vol. 18, No. 4, pp. 599-614. https://doi.org/10.2166/hydro.2016.180
  12. European Union (2011). Work package WP 4.1 -short-term weather forecasting for shallow landslide prediction, safe land project.
  13. Fields, G., Seed, A., Yu, B., and Malone, T. (2004). "Calibration of weather radar in South East Queensland." Proceedings 6th International Symposium on Hydrological Applications of Weather Radar, Melbourne, Australia.
  14. Fox, N. I., and Wikle, C. K. (2005). "A Bayesian quantitative precipitation nowcast scheme." Weather and Forecasting, Vol. 20, No. 3, pp. 264-275. https://doi.org/10.1175/WAF845.1
  15. Fulton, R. A., Breidenbach, J. P., Seo, D. J., Miller, D. A., and O'Bannon, T. (1998). "The WSR-88D rainfall algorithm." Weather and Forecasting, Vol. 13, No. 2, pp. 377-395. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  16. Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)." Bayesian Analysis, Vol. 1, No. 3, pp. 515-534. https://doi.org/10.1214/06-BA117A
  17. Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J., Ikeda, K., Lindsey, D., Wood, A., Dolan, B., Matrosov, S., Newman, A., Mahoney, K., Rutledge, S., Johnson, R., Kucera, P., Kennedy, P., Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W., Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B. (2015). "The great Colorado flood of September 2013." Bulletin of the American Meteorological Society, Vol. 96, No. 9, pp. 1461-1487. https://doi.org/10.1175/BAMS-D-13-00241.1
  18. Horritt, M. S., Mason, D. C., and Luckman, A. J. (2001). "Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model." International Journal of Remote Sensing, Vol. 22, No. 13, pp. 2489-2507. https://doi.org/10.1080/01431160116902
  19. Jones, D. M. A. (1956). Rainfall drop-size distribution and radar reflectivity. Illinois State Water Survey.
  20. Jorgensen, D. P., and Willis, P. T. (1982). "A ZR relationship for hurricanes." Journal of Applied Meteorology, Vol. 21, No. 3, pp. 356-366. https://doi.org/10.1175/1520-0450(1982)021<0356:AZRRFH>2.0.CO;2
  21. Kelly, J. F., Shipley, J. R., Chilson, P. B., Howard, K. W., Frick, W. F., and Kunz, T. H. (2012). "Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars." Ecosphere, Vol. 3, No. 2, pp. 1-9.
  22. Kim, J. H., and Yoo, C. S. (2014). "Using extended Kalman filter for real-time decision of parameters of Z-R relationship." Journal of Korea Water Resources Association, Vol. 47, No. 2, pp. 119-133 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.2.119
  23. Kim, T. J., and Kwon, H. H. (2016) "Development of tracking technique for short term rainfall field forecasting." Procedia Engineering, Vol. 154, pp. 1058-1063. https://doi.org/10.1016/j.proeng.2016.07.596
  24. Kim, T. J., Kwon, H. H., Lee, D. R., and Yoon, S. K. (2014) "Development of stochastic downscaling method for rainfall data using GCM." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 825-838 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.825
  25. Krajewski, W. F., and Smith, J. A. (2002). "Radar hydrology: rainfall estimation." Advances in Water Resources, Vol. 25, No. 8-12, pp. 1387-1394. https://doi.org/10.1016/S0309-1708(02)00062-3
  26. Kwon, H. H., Lall, U., and Engel, V. (2011). "Predicting foraging wading bird populations in Everglades National Park from seasonal hydrologic statistics under different management scenarios." Water Resources Research, Vol. 47, No. 9.
  27. Marshall, J. S., and Palmer, W. Mc K. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  28. National Oceanic and Atmospheric Administration and United States Geological Survey (2005). NOAA-USGS debris-flow warning system-final report. National Oceanic and Atmospheric Administration and United States Geological Survey.
  29. Rico-Ramirez, M. A., Liguori, S., and Schellart, A. N. A. (2015). "Quantifying radar-rainfall uncertainties in urban drainage flow modelling." Journal of hydrology, Vol. 528, pp. 17-28. https://doi.org/10.1016/j.jhydrol.2015.05.057
  30. Rosenfeld, D., Wolff, D. B., and Atlas, D. (1993). "General probability-matched relations between radar reflectivity and rain rate." Journal of Applied Meteorology, Vol. 32, No. 1, pp. 50-72. https://doi.org/10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
  31. Seed, A., Siriwardena, L., Sun, X., Jordan, P., and Elliott, J. (2002). On the calibration of Australian weather radars. CRC for Catchment Hydrology.
  32. Villarini, G., and Krajewski, W. F. (2010). "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall." Surveys in Geophysics, Vol. 31, No. 1, pp. 107-129. https://doi.org/10.1007/s10712-009-9079-x
  33. Willems, P. (2001). "Stochastic description of the rainfall input errors in lumped hydrological models." Stochastic Environmental Research and Risk Assessment, Vol. 15, No. 2, pp. 132-152. https://doi.org/10.1007/s004770000063
  34. Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J., and Rowe, C. M. (1985). "Statistics for the evaluation and comparison of models." Journal of Geophysical Research: Oceans, Vol. 90, No. C5, pp. 8995-9005. https://doi.org/10.1029/JC090iC05p08995
  35. Yates, E., Anquetin, S., Ducrocq, V., Creutin, J. D., Ricard, D., and Chancibault, K. (2006). "Point and areal validation of forecast precipitation fields." Meteorological Applications, Vol. 13, No. 1, pp. 1-20. https://doi.org/10.1017/S1350482705001921
  36. Yoo, C. S., and Ku, J. M. (2017). "Vertical variation of Z-R relationship at Hallasan mountain during typhoon Nakri in 2014. Advances in Meteorology, Vol. 2017.
  37. Yoo, C. S., Kim, J. H., Chung, J. H., and Yang, D. M. (2011). "Mean field bias correction of the very-short-range-forecast rainfall using the kalman filter." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 17-28 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.3.017
  38. Zhang, F., and Weng, Y. (2015). "Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations." Bulletin of the American Meteorological Society, Vol. 96, No. 1, pp. 25-33. https://doi.org/10.1175/BAMS-D-13-00231.1