References
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Ending and buckling analyses of functionallyw graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), "Variable kinematic models applied to free-vibration analysis of functionally graded material shells", Eur. J. Mech.- A/Solids, 29(6), 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001
- Civalek, O. (2017), "Vibration of laminated composite panels and curved plates with different types of FGM composite constituent", Compos. Part B, 122, 89-108. https://doi.org/10.1016/j.compositesb.2017.04.012
- Damnjanovic, E., Marjanovic, M. and Danilovic, M.N. (2017), "Free vibration analysis of stiffened and cracked laminated composite plate assemblies using shear-deformable dynamic stiffness elements", Compos. Struct., 180, 723-740. https://doi.org/10.1016/j.compstruct.2017.08.038
- Donnell, L.H. (1934), Stability Of Thin-walled Tubes Under Torsion, NACA Report; CA, United States.
- Duc, D.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech.- A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Farid, M., Zahedinejad, P. and Malekzadeh, P. (2010), "Threedimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on twoparameter elastic foundation using a hybrid semi-analytic, differential quadrature method", Mater. Des., 31(1), 2-13. https://doi.org/10.1016/j.matdes.2009.07.025
- Frikha, A., Wali, M., Hajlaoui, A. and Dammak, F. (2016), "Dynamic response of functionally graded material shells with a discrete double directors shell element", Compos. Struct., 154, 385-395. https://doi.org/10.1016/j.compstruct.2016.07.021
- Ganapathi, M. (2007), "Dynamic stability characteristics of functionally graded materials shallow spherical shells", Compos. Struct., 79(3), 338-343. https://doi.org/10.1016/j.compstruct.2006.01.012
- Jagtap, K.R., Lal, A. and Singh, B.N. (2011), "Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment", Compos. Struct., 93(12), 3185-3199. https://doi.org/10.1016/j.compstruct.2011.06.010
- Jin, G., Shi, S., Su, Z., Li, S. and Liu, Z. (2015), "A modified Fourier-Ritzapproach for free vibration analysis of laminated functionally graded shallow shells with general boundary conditions", Int. J. Mech. Sci., 93, 256-269. https://doi.org/10.1016/j.ijmecsci.2015.02.006
- Khalili, S.M.R. and Mohammadi, Y. (2012), "Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach", Eur. J. Mech.- A/Solids, 35, 61-74. https://doi.org/10.1016/j.euromechsol.2012.01.003
- Khayat, M., Poorvies, D. and Moradi, S. (2016a), "Buckling of Thick Deep Laminated Composite Shell of Revolution under Follower Forces", Struct. Eng. Mech., Int. J., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059
- Khayat, M., Poorvies, D., Moradi, S. and Hemmati, M. (2016b), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
- Khayat, M., Poorvies, D. and Moradi, S. (2017a), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., Int. J., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001
- Khayat, M., Poorvies, D. and Moradi, S. (2017b), "Semi-Analytical Approach in Buckling Analysis of Functionally Graded Shells of Revolution Subjected to Displacement Dependent Pressure", J. Press. Vessel Technol., 139.
- Lee, H.W. and Kwak, M.K. (2015), "Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories", J. Sound Vib., 353(29), 344-377. https://doi.org/10.1016/j.jsv.2015.05.028
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally gradedcylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Mahamood, R.M. and Akinlabi, E.T. (2012), "Functionally Graded Material: An Overview", Proceedings of the World Congress on Engineering, London, UK.
- Mahmoud, S.R. and Tounsi, A. (2017), "A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 24(5), 569-578.
- Naghsh, A., Saadatpour, M.M. and Azhari, M. (2015), "Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method", Thin-Wall. Struct., 94, 651-662. https://doi.org/10.1016/j.tws.2015.05.015
- Nanda, N. and Sahu, S.K. (2012), "Free vibration analysis of delaminated composite shells using different shell theories", Int. J. Press. Vessels Piping, 98, 111-118. https://doi.org/10.1016/j.ijpvp.2012.07.008
- Novozhilov, V.V. (1964), The Theory Of Thin Elastic Shells, P. Noordhoff, Ltd., Groningen, The Netherlands.
- Patel, B.P., Gupta, S.S., Loknath, M.S. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69, 259-270. https://doi.org/10.1016/j.compstruct.2004.07.002
- Qin, X.C., Dong, C.Y., Wang, F. and Qu, X.Y. (2017), "Static and dynamic analyses of isogeometric curvilinearly stiffened plates", Appl. Math. Model., 45, 336-364. https://doi.org/10.1016/j.apm.2016.12.035
- Rajasekaran, S. (2013), "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods", Appl. Math. Model., 37(6), 4440-4463. https://doi.org/10.1016/j.apm.2012.09.024
- Reissner, E. (1941), "A new derivation of the equations for the deformation of elastic shells", Am. J. Math, 63,177-188. https://doi.org/10.2307/2371288
- Sanders, J.L. (1959), An Improved First-approximation Theory For Thin Shells; NACA Report, CA, United States.
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and nonclassical boundary conditions", Compos. Part B, 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
- Sofiyev, A.H. (2010), "The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure'', Compos. Struct., 92, 488-498. https://doi.org/10.1016/j.compstruct.2009.08.033
- Su, Z., Jin, G. and Ye, T. (2014), "Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions'', Compos. Struct., 117, 169-186. https://doi.org/10.1016/j.compstruct.2014.06.026
- Teng, J.G. and Hong, T. (1998), "Nonlinear thin shell theories for numerical buckling predictions", Thin-Wall. Struct., 31, 89-115. https://doi.org/10.1016/S0263-8231(98)00014-7
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer Theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012
- Tornabene, F., Brischetto, S., Fantuzzi, N. and Viola, E. (2015), "Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels", Compos. Part B, 81, 231-250. https://doi.org/10.1016/j.compositesb.2015.07.015
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016), "The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach", Compos. Struct., 15, 190-218.
- Torki, M.E., Kazemi, M.T., Haddadpour, H. and Mahmoudkhani, S. (2014), "Dynamic stability of cantilevered functionally graded cylindrical shells under axial follower forces", Thin-Wall. Structures, 79, 138-146. https://doi.org/10.1016/j.tws.2013.12.005
- Wali, M., Hentati, T. and Dammak, F. (2015), "Free vibration analysis of FGM shell structures with a discrete double directors shell element", Compos. Struct., 125, 295-303. https://doi.org/10.1016/j.compstruct.2015.02.032
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures'', Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
Cited by
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2018, https://doi.org/10.12989/scs.2021.40.2.307