References
- Jayakumar T, Thomas PA, Geraldine P (2009) In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov Food Sci Emerg 10: 228-234 https://doi.org/10.1016/j.ifset.2008.07.002
- Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160: 1-40 https://doi.org/10.1016/j.cbi.2005.12.009
- Han HS, Jhune CS, Cheong JC, Oh JA, Kong WS, Cha JS, Lee CJ (2012) Occurrence of black rot of cultivated mushrooms (Flammulina velutipes) caused by Pseudomonas tolaasii in Korea. Eur J Plant Pathol 133: 527-535 https://doi.org/10.1007/s10658-012-9941-4
- Kim JW, Kim KH, Kang HJ (1994) Studies on the pathogenic Pseudomonas causing bacterial disease of cultivated mushroom in Korea: 1. On the causal organisms of the rots of Agaricus bisporus, Pleurotus ostreatus, and Lentinus edodes. Korean J Plant Pathol 10: 197-210
- Tolaas AG (1915) A bacterial disease of cultivated mushrooms. Phytopathol 5: 51-54
- Soler-Rivas C, Arpin N, Olivier JM, Wichers HJ (1999) WLIP, a lipodepsipeptide of Pseudomonas 'reactans', as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J Appl Microbiol 86: 635-641 https://doi.org/10.1046/j.1365-2672.1999.00709.x
- Lee CJ, Yoo YM, Han JY, Jhune JY, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS (2013) Isolation of the bacterium Pseudomonas sp. HC1 effective in inactivatioin of tolaasin produced by Pseudomonas tolaasii. Kor J Mycol 41: 248-254 https://doi.org/10.4489/KJM.2013.41.4.248
- Largeteau ML, Savoie JM (2010) Microbially induced diseases of Agaricus bisporus: Biochemical mechanisms and impact on commercial mushroom production. Appl Microbiol Biotechnol 86: 63-73 https://doi.org/10.1007/s00253-010-2445-2
- Brodey CL, Rainey PB, Tester M, Johnstone K (1991) Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol Plant Microbe Interact 4: 407-411 https://doi.org/10.1094/MPMI-4-407
- Wong WC, Preece TF (1979) Identification of Pseudomonas tolaasii: The white line in agar and mushroom tissue block rapid pitting tests. J Appl Bacteriol 47: 404-407
- Cho KH, Park KS, Kim YK (2000) Hemolytic properties of tolaasin causing the brown blotch disease on oyster mushroom. J Korean Soc Agric Chem Biotechnol 43: 190-195
-
Choi TK, Wang HS, Kim YK (2009) Inhibitory effect of
$Ni^{2+}$ on the tolaasin-induced hemolysis. J Appl Biol Chem 52: 28-32 https://doi.org/10.3839/jabc.2009.005 -
Cho KH, Kim ST, Kim YK (2006) Inhibitory effect of
$Zn^{2+}$ on tolaasininduced hemolysis. J Korean Soc Appl Biol Chem 49: 281-286 - Kim ST, Choi TK, Kim YK (2007) pH-dependent cytotoxicity of a peptide toxin, tolaasin. J Korean Soc Appl Biol Chem 50: 257-261
- Yun YB, Kim MH, Han JH, Kim YK (2017) Suppression of brown blotch disease by tolaasin inhibitory factors. J Appl Biol Chem 60: 179-184 https://doi.org/10.3839/jabc.2017.029
- Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20: 667-673 https://doi.org/10.1016/S0955-2219(99)00203-4
- Hernandez N, Moreno R, Sanchez-Herencia J, Fierro JLG (2005) Surface behavior of nickel powders in aqueous suspensions. J Phys Chem 109: 4470-4474 https://doi.org/10.1021/jp0448954
-
Jourdan F, Lazzaroni S, Mendez BL, Lo Cantore P, de Julio M, Amodeo P, Iacobellis NS, Evidente A, Motta A (2003) A left-handed
$\alpha$ -helix containing both L- and D-amino acids: the solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins 52: 534-543 https://doi.org/10.1002/prot.10418 - Mortishire-Smith RJ, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans. Tetrahedron 47: 3645-3654 https://doi.org/10.1016/S0040-4020(01)80877-2
- Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 281: 4823-4830 https://doi.org/10.1074/jbc.M510197200