DOI QR코드

DOI QR Code

Ionic Conductivity in Lithium-Borate-Tantalate Compound Glasses

  • Kwon, Oh Hyeok (Department of Nano Fusion Technology, Pusan National University) ;
  • Yang, Yong Suk (Department of Nano Fusion Technology, Pusan National University) ;
  • Rim, Young Hoon (College of Liberal Arts, Semyung University)
  • Received : 2018.11.07
  • Accepted : 2018.11.19
  • Published : 2018.12.30

Abstract

We have investigated the ionic conductivity and dielectric relaxation in $Li_2B_4O_7$ (LBO) and $Li_2O-B_2O_3-Ta_2O_5$ (LBTO) glasses. The sample was synthesized by using the melt quenching method. The frequency dependence of the electrical data from the LBO and LBTO glasses has been analyzed in the frameworks of the impedance Cole-Cole formalism and the universal power-law representation driven by the modified fractional Rayleigh equation. The potential barriers in the LBO and the LBTO glasses turn out to be the same. Comparing with the dc and ac activation energies of the LBO glass, these energies of the LBTO glass decrease due to the increasing Coulomb interaction of inter-cationic interaction.

Keywords

Acknowledgement

Supported by : Semyung University

References

  1. R. Komatsu, T. Sugawara and K. Sassa, Appl. Phys. Lett. 70, 3492 (1997). https://doi.org/10.1063/1.119210
  2. T. Sato and H. Abe, IEEE Trans. Ultrason. Ferroelectrics Frequency Control 45, 1506 (1998). https://doi.org/10.1109/58.738290
  3. J. H. Cho, N. J. Bang, S. H. Kim and Y. S. Yang, J. Korean Phys. Soc. 29, S555 (1996).
  4. V. Y. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin and M. M. Smirnov, Appl. Phys. Lett. 103, 242903 (2013). https://doi.org/10.1063/1.4846015
  5. A. E. Aliev, I. N. Kholmanov and P. K. Khabibullaev, Solid State Ionics 118, 111 (1999). https://doi.org/10.1016/S0167-2738(98)00430-5
  6. J. Liu, M. N. Banis, X. Li, A. Lushington, M. Cai, R. Li, T-K Sham and X. Sun J. Phys. Chem. C 117, 20260 (2013).
  7. A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996).
  8. J. C. Dyre and T. B. Schroder, Rev. Mod. Phys. 72, 873 (2000). https://doi.org/10.1103/RevModPhys.72.873
  9. Y. H. Rim, M. Kim, J. E. Kim and Y. S. Yang, New J. Phys. 15, 023005 (2013). https://doi.org/10.1088/1367-2630/15/2/023005
  10. C. T. Moynihan, L. P. Boesch and N. L. Laberge, Phys. Chem. Glasses 14, 122 (1973).
  11. Y. H. Rim, B. S. Lee, H. W. Choi, J. H. Cho and Y. S. Yang, J. Phys. Chem. B 110, 8094 (2006). https://doi.org/10.1021/jp060415s
  12. J. R. Macdonald, Impedance Spectroscopy, second ed. (John Wiley & Sons Inc., New Jersey, 2005).
  13. J. C. Dyre, P. Maass, B. Roling and D. L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009). https://doi.org/10.1088/0034-4885/72/4/046501
  14. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).
  15. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3
  16. P. Maass, A. Bunde and M. D. Ingram, Phys. Rev. Lett. 68, 3064 (1992). https://doi.org/10.1103/PhysRevLett.68.3064
  17. D. L. Sidebottom, Phys. Rev. B 61, 14507 (2000). https://doi.org/10.1103/PhysRevB.61.14507