DOI QR코드

DOI QR Code

Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors

  • Kim, Hyojung (Department of Energy Science, Sungkyunkwan University) ;
  • Byun, Hye Ryung (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Bora (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Sung Hyuk (Department of Energy Science, Sungkyunkwan University) ;
  • Oh, Hye Min (Department of Energy Science, Sungkyunkwan University) ;
  • Jeong, Mun Seok (Department of Energy Science, Sungkyunkwan University)
  • Received : 2018.10.02
  • Accepted : 2018.10.16
  • Published : 2018.11.30

Abstract

Methylammonium lead halide ($MAPbI_3$) perovskites are considered as promising materials owing to their excellent optical and electrical properties. However, perovskite materials suffer from degradation in air, which limits their practical applications. Here, we demonstrate successful passivation of the $MAPbI_3$ photodetectors through monochloro-para-xylylene (Parylene-C) deposition. The time-dependent photocurrent characteristics were systematically investigated, and we achieved significantly improved device performance and stability with Parylene-C passivation. Based on the excitation-power-dependent photoluminescence (PL) data, we confirmed that Parylene-C can reduce the carrier losses in $MAPbI_3$, leading to the enhancement of photocurrent and PL in $MAPbI_3$ photodetectors.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D. H. Shin, J. H. Heo and S. H. Im, J. Korean Phys. Soc. 71, 593 (2017). https://doi.org/10.3938/jkps.71.593
  2. H. Lee, S. Rhee, J. Kim, C. Lee and H. Kim, J. Korean Phys. Soc. 69, 406 (2016). https://doi.org/10.3938/jkps.69.406
  3. M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134
  4. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014). https://doi.org/10.1039/c3ee43822h
  5. R. J. Sutton et al., Adv. Energy Mater. 6, 1502458 (2016). https://doi.org/10.1002/aenm.201502458
  6. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Adv. Mater. 26, 1584 (2014). https://doi.org/10.1002/adma.201305172
  7. E. Horvath et al., Nano Lett. 14, 6761 (2014). https://doi.org/10.1021/nl5020684
  8. G. Wang et al., Sci. Adv. 1, e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
  9. W. Deng et al., Adv. Mater. 28, 2201 (2016). https://doi.org/10.1002/adma.201505126
  10. H. Wang et al., ACS Nano 10, 10921 (2016). https://doi.org/10.1021/acsnano.6b05535
  11. J. Liu et al., ACS Nano 10, 3536 (2016). https://doi.org/10.1021/acsnano.5b07791
  12. L. Dou et al., Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404
  13. W. Wang, Y. Ma and L. Qi, Adv. Funct. Mater. 27, 1603653 (2017). https://doi.org/10.1002/adfm.201603653
  14. S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie and G. Shi, Adv. Mater. 28, 5969 (2016). https://doi.org/10.1002/adma.201600468
  15. A. Waleed et al., Nano Lett. 17, 523 (2017). https://doi.org/10.1021/acs.nanolett.6b04587
  16. C-J. Teng, D. Xie, M-X. Sun, S. Chen, P. Yang and Y-L. Sun, ACS Appl. Mater. Interfaces 8, 31289 (2016). https://doi.org/10.1021/acsami.6b09502
  17. Y. Guo, C. Liu, H. Tanaka and E. Nakamura, J. Phys. Chem. Lett. 6, 535 (2015). https://doi.org/10.1021/jz502717g
  18. J-H. Lee and A. Kim, Org. Electron. 47, 147 (2017). https://doi.org/10.1016/j.orgel.2017.05.005
  19. Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu and N. P. Padture, J. Mater. Chem. A 3, 8178 (2015). https://doi.org/10.1039/C5TA00477B
  20. M. A. Spivack and G. Ferrante, J. Electrochem. Soc. 116, 1592 (1969). https://doi.org/10.1149/1.2411625
  21. X. Lao et al., Nanoscale 10, 9949 (2018). https://doi.org/10.1039/C8NR01109E
  22. H. R. Byun, D. Y. Park, H. M. Oh, G. Namkoong and M. S. Jeong, ACS Photonics 4, 2813 (2017). https://doi.org/10.1021/acsphotonics.7b00797
  23. H. Y. Choi et al., AIP Conf. Proc. 1399, 543 (2011).
  24. F. Wang, S. Bai, W. Tress, A. Hagfeldt and F. Gao, npj Flexible Electron. 2, 22 (2018). https://doi.org/10.1038/s41528-018-0035-z

Cited by

  1. Encapsulation of a Monolayer WSe2 Phototransistor with Hydrothermally Grown ZnO Nanorods vol.11, pp.22, 2018, https://doi.org/10.1021/acsami.9b03508
  2. Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-51945-9
  3. Self‐Cleaned Photonic‐Enhanced Solar Cells with Nanostructured Parylene‐C vol.7, pp.15, 2018, https://doi.org/10.1002/admi.202000264
  4. Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications vol.10, pp.30, 2018, https://doi.org/10.1002/aenm.202000768
  5. Intrinsic-polarization origin of photoconductivity in MAPbI3thin films vol.118, pp.15, 2018, https://doi.org/10.1063/5.0046997