DOI QR코드

DOI QR Code

SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE

  • Hussain, Laiq (Department of Mathematics, Physics and Electrical Engineering, Halmstad University) ;
  • Pettersson, Hakan (Department of Mathematics, Physics and Electrical Engineering, Halmstad University) ;
  • Wang, Qin (Acreo Swedish ICT AB) ;
  • Karim, Amir (Acreo Swedish ICT AB) ;
  • Anderson, Jan (Acreo Swedish ICT AB) ;
  • Jafari, Mehrdad (Department of Mathematics, Physics and Electrical Engineering, Halmstad University) ;
  • Song, Jindong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Choi, Won Jun (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Han, Il Ki (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Lim, Ju Young (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • Received : 2018.03.08
  • Accepted : 2018.06.19
  • Published : 2018.11.30

Abstract

Utilizing Sb-based bulk epilayers on large-scale low-cost substrates such as GaAs for fabricating infrared (IR) photodetectors is presently attracting significant attention worldwide. For this study, three sample series of $GaAs_xSb_{1-x}$, $In_{1-x}Ga_xSb$, and $InAs_xSb_{1-x}$ with different compositions were grown on semi-insulating GaAs substrates by using molecular beam epitaxy (MBE) and appropriate InAs quantum dots (QDs) as a defect-reduction buffer layer. Photoluminescence (PL) signals from these samples were observed over a wide IR wavelength range from $2{\mu}m$ to $12{\mu}m$ in agreement with the expected bandgap, including bowing effects. In particular, interband PL signals from $InAs_xSb_{1-x}$ and $In_{1-x}Ga_xSb$ samples even at room temperature show promising potential for IR photodetector applications.

Keywords

References

  1. A. Rogalski, Infrared Physics and Technology. 54, 136 (2011), doi:10.1016/j.infrared.2010.12.003.
  2. A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh and S. Krishna, Appl. Phys. Lett. 97, 2008 (2010). doi:10.1063/1.3475022.
  3. O. Gustafsson, A. Karim, C. Asplund, Q. Wang, T. Zabel, S. Almqvist, S. Savage, J. Y. Andersson and M. Hammar, Infrared Physics and Technology 61, 319 (2013), doi:10.1016/j.infrared.2013.09.009.
  4. H. Martijn, C. Asplund, R. M. von Wurtemberg and H. Malm, in Proc. SPIE 8704, Infrared Technology and Applications XXXIX. 8704 87040Z-87040Z-9 (2013), doi:10.1117/12.2016602.
  5. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), doi:10.1063/1.1368156.
  6. T. J. Kim, J. J. Yoon, S. Y. Hwang, D. E. Aspnes, Y. D. Kim, H. J. Kim, Y. C. Chang and J. D. Song, Appl. Phys. Lett. 95, 111902 (2009) doi:10.1063/1.3216056.
  7. T. J. Kim, J. J. Yoon, J. S. Byun, S. Y. Hwang, D. E. Aspnes, S. H. Shin, J. D. Song, C. T. Liang, Y. C. Chang, N. S. Barange, J. Y. Kim and Y. D. Kim, Appl. Phys. Lett. 102, 3 (2013), doi:10.1063/1.4795622.
  8. J. Y. Lim, J. D. Song and H. S. Yang, Thin Solid Films 520, 6589 (2012), doi:10.1016/j.tsf.2012.06.077.
  9. S. Joo, T. Kim, S. H. Shin, J. Y. Lim, J. Hong, J. D. Song, J. Chang, H-W. Lee, K. Rhie, S. H. Han, K-H. Shin and M. Johnson, Nature 494, 72 (2013), doi:10.1038/nature11817.
  10. K. H. Yoen, J. D. Song, E. H. Lee, H. J. Jang, M. H. Bae, J. Y. Kim, I. K. Han and W. J. Choi, Materials Research Bulletin 57, 152 (2014), doi:10.1016/j.materresbull.2014.05.040.
  11. Y. Z. Gao, X. Y. Gong, W. Z. Fang, G. H. Wu and Y. B. Feng, 48, 0802021 (2009), doi:10.1143/JJAP.48.080202.
  12. I. Shafir, M. Katz, A. Sher, A. Raizman, A. Zussman and M. Nathan, Semiconductor Science and Technology 25, 45 (2010).
  13. C. H. Sun, Q. W. Wang, F. Qiu, Y. F. Lv, H. Y. Deng, S. H. Hu and N. Dai, Journal of Alloys and Compounds 535, 39 (2012). https://doi.org/10.1016/j.jallcom.2012.04.049
  14. J. B.Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Y. G. Sadofyev, Y. H. Zhang, J. A. Gupta and C. Z. Guo, Phys. Rev. B - Condensed Matter and Materials Physics 70, 1 (2004).
  15. G. Liu, S. Chuang, S. Park and S. Park, J. Appl. Phys. 88, 5554 (2009).
  16. M. Ferhat, Physica Status Solidi 241, 38 (2004). https://doi.org/10.1002/pssb.200409048
  17. J. Tatebayashi, B. Liang, D. A. Bussian, H. Htoon, S. Huang, G. Balakrishnan, V. Klimov, L. R. Dawson and D. L. Huffaker, IEEE Transactions on Nanotechnology 8, 269 (2009). https://doi.org/10.1109/TNANO.2008.2008717
  18. P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang and A. Krier, Physica B 407, 1493 (2012). https://doi.org/10.1016/j.physb.2011.09.069
  19. K. Gradkowski, T. J. Ochalski, D. P. Williams, J. Tatebayashi, A. Khoshakhlagh, G. Balakrishnan, E. P. O'Reilly, G. Huyet, L. R. Dawson and D. L. Huffaker, Journal of Luminescence 129, 456 (2009). https://doi.org/10.1016/j.jlumin.2008.11.012
  20. F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S. V. Ivanov, B. Y. Meltser, P. S. Kop'Ev and Z. I. Alferov, Applied Physics Letters, 67 656-658 (1995). https://doi.org/10.1063/1.115193
  21. N. N. Ledentsov, J. Bohrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Ya. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. KopEv and Z. I. Alferov, Phys. Rev. B 52, 14058 (1995). https://doi.org/10.1103/PhysRevB.52.14058
  22. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen and G. B. Stringfellow, J. Appl. Phys. 67, 7034 (1990). https://doi.org/10.1063/1.345050
  23. M. Y. Yen, R. People and K. W. Wecht, J. Appl. Phys. 64, 952 (1988). https://doi.org/10.1063/1.341904