DOI QR코드

DOI QR Code

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang (Department of Environmental Science and Engineering, Huaqiao University) ;
  • Zhang, Qian (Department of Environmental Science and Engineering, Huaqiao University) ;
  • Honga, Jun-ming (Department of Environmental Science and Engineering, Huaqiao University)
  • Received : 2018.02.20
  • Accepted : 2018.07.02
  • Published : 2018.11.25

Abstract

In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.

Keywords

Acknowledgement

Supported by : Fujian Province Science and Technology Project Foundation

References

  1. A. Srikiatkhachorn, N. Tarasub, P. Govitrapong, Neurochem. Int. 34 (1999) 491. https://doi.org/10.1016/S0197-0186(99)00023-6
  2. B. Subedi, S. Lee, H.B. Moon, K. Kannan, Environ. Int. 68 (2014) 33. https://doi.org/10.1016/j.envint.2014.03.006
  3. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H. T. Buxton, Environ. Sci. Technol. 36 (2002) 1202. https://doi.org/10.1021/es011055j
  4. X. Yang, R.C. Flowers, H.S. Weinberg, P.C. Singer, Water Res. 45 (2011) 5218. https://doi.org/10.1016/j.watres.2011.07.026
  5. T.A. Ternes, Water Res. 32 (1998) 3245. https://doi.org/10.1016/S0043-1354(98)00099-2
  6. J.P. Bound, N. Voulvoulis, Water Res. 40 (2006) 2885. https://doi.org/10.1016/j.watres.2006.05.036
  7. J. Kim, H. Ishibashi, R. Yamauchi, N. Ichikawa, Y. Takao, M. Hirano, M. Koga, K. Arizono, J. Toxicol. Sci. 34 (2009) 227. https://doi.org/10.2131/jts.34.227
  8. Y. Kim, K. Choi, J. Jung, S. Park, P. Kim, J. Park, Environ. Int. 33 (2007) 370. https://doi.org/10.1016/j.envint.2006.11.017
  9. S.Y. Oh, S.G. Kang, P.C. Chiu, Sci. Total Environ. 408 (2010) 3464. https://doi.org/10.1016/j.scitotenv.2010.04.032
  10. C.Y. Zhu, G.D. Fang, D.D. Dionysios, C. Liu, J. Gao, W.X. Qin, D.M. Zhou, J. Hazard. Mater. 316 (2016) 232. https://doi.org/10.1016/j.jhazmat.2016.05.040
  11. M.P. Rayaroth, C.S. Lee, U.K. Aravind, C.T. Aravindakumar, Y.S. Chang, Chem. Eng. J. 315 (2017) 426. https://doi.org/10.1016/j.cej.2017.01.031
  12. H.X. Li, J.Q. Wan, Y.W. Ma, M.Z. Huang, Y. Wang, Y.M. Chen, Chem. Eng. J. 250 (2014) 137. https://doi.org/10.1016/j.cej.2014.03.092
  13. A. Ghauch, G. Ayoub, S. Naim, Chem. Eng. J. 228 (2013) 1168. https://doi.org/10.1016/j.cej.2013.05.045
  14. X. Li, M.H. Zhou, Y.W. Pan, L.T. Xu, Chem. Eng. J. 307 (2017) 1092. https://doi.org/10.1016/j.cej.2016.08.140
  15. I. Hussain, M.Y. Li, Y.Q. Zhang, Chem. Eng. J. 311 (2017) 163. https://doi.org/10.1016/j.cej.2016.11.085
  16. J.H. Ramirez, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, C. Moreno-Castilla, C. A. Costa, L.M. Madeira, Appl. Catal. B: Environ. 75 (2007) 312. https://doi.org/10.1016/j.apcatb.2007.05.003
  17. K.Y. Lee, D.J. Mooney, Prog. Polym. Sci. 37 (2012) 106. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  18. J. Jang, D.S. Lee, Bioresour. Technol. 218 (2016) 294. https://doi.org/10.1016/j.biortech.2016.06.100
  19. A. Benhouria, M.A. Islam, H. Zaghouane-Boudiaf, M. Boutahala, B.H. Hameed, Chem. Eng. J. 270 (2015) 621. https://doi.org/10.1016/j.cej.2015.02.030
  20. S. Barreca, J.J.V. Colmenares, A. Pace, S. Orecchio, C. Pulgarin, J. Photochem. Photobiol. A: Chem. 282 (2014) 33. https://doi.org/10.1016/j.jphotochem.2014.02.008
  21. O. Iglesias, M.A.F. de Dios, T. Tavares, M.A. Sanroman, M. Pazos, J. Ind. Eng. Chem. 27 (2015) 276. https://doi.org/10.1016/j.jiec.2014.12.044
  22. H. Titouhi, J.E. Belgaied, J. Environ. Sci. 45 (2016) 84. https://doi.org/10.1016/j.jes.2015.12.017
  23. S. Ben Hammouda, F. Fourcade, A. Assadi, I. Soutrel, N. Adhoum, A. Amrane, L. Monser, Appl. Catal. B: Environ. 182 (2016) 47. https://doi.org/10.1016/j.apcatb.2015.09.007
  24. E. Rosales, O. Iglesias, M. Pazos, M.A. Sanroman, J. Hazard. Mater. 213-214 (2012) 369. https://doi.org/10.1016/j.jhazmat.2012.02.005
  25. Y.X. Liu, T.O. Yang, D.X. Yuan, X.Y. Wu, Desalination 254 (2010) 149. https://doi.org/10.1016/j.desal.2009.12.003
  26. W.H. Park, Ecol. Eng. 35 (2009) 1275. https://doi.org/10.1016/j.ecoleng.2009.05.015
  27. C. Namasivayam, A. Sakoda, M. Suzuki, J. Chem. Technol. Biot. 80 (2005) 356. https://doi.org/10.1002/jctb.1175
  28. H.Y. Yen, J.H. Cho, Ecol. Eng. 95 (2016) 229. https://doi.org/10.1016/j.ecoleng.2016.06.065
  29. H.H. Zhang, B. Cao, W.P. Liu, K.D. Lin, J. Feng, J. Environ. Sci. 24 (2012) 314. https://doi.org/10.1016/S1001-0742(11)60769-9
  30. S. Ben Hammouda, N. Adhoum, L. Monser, J. Hazard. Mater. 301 (2016) 350. https://doi.org/10.1016/j.jhazmat.2015.09.012
  31. O. Iglesias, J. Gomez, M. Pazos, M.A. Sanroman, Appl. Catal. B: Environ. 144 (2014) 416. https://doi.org/10.1016/j.apcatb.2013.07.046
  32. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Carbohydr. Res. 345 (2010) 469. https://doi.org/10.1016/j.carres.2009.12.010
  33. P. Cambier, Clay Miner. 21 (1986) 191. https://doi.org/10.1180/claymin.1986.021.2.08
  34. K.J. Sreeram, H.Y. Shrivastava, B.U. Nair, Biochimica et Biophysica Acta(BBA)-General Subjects 1670 (2004) 121. https://doi.org/10.1016/j.bbagen.2003.11.001
  35. T. Coradin, J. Livage, J. Solgel Sci. Technol. 26 (2003) 1165. https://doi.org/10.1023/A:1020787514512
  36. R.X. Yuan, S.N. Ramjaun, Z.H. Wang, J.S. Liu, J. Hazard. Mater. 196 (2011) 173. https://doi.org/10.1016/j.jhazmat.2011.09.007
  37. G.D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.M. Zhou, J. Hazard. Mater. 227-228 (2012) 394. https://doi.org/10.1016/j.jhazmat.2012.05.074
  38. S.Y. Yang, P. Wang, X. Yang, L. Shan, W.Y. Zhang, X.T. Shao, R. Niu, J. Hazard. Mater. 179 (2010) 552. https://doi.org/10.1016/j.jhazmat.2010.03.039
  39. C.J. Liang, Z.S. Wang, N. Mohanty, Sci. Total Environ. 370 (2006) 271. https://doi.org/10.1016/j.scitotenv.2006.08.028
  40. G. Ayoub, A. Ghauch, Chem. Eng. J. 256 (2014) 280. https://doi.org/10.1016/j.cej.2014.07.002
  41. G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Appl. Catal. B: Environ. 129 (2013) 325. https://doi.org/10.1016/j.apcatb.2012.09.042
  42. C.Y. Zhu, G.D. Fang, D.D. Dionysios, C. Lin, J. Gao, W.X. Qin, D.M. Zhou, J. Hazard. Mater. 316 (2016) 232. https://doi.org/10.1016/j.jhazmat.2016.05.040
  43. Xia Jiang, Y.H. Guo, L.B. Zhang, W.J. Jiang, R.Z. Xie, Chem. Eng. J. 341 (2018) 392. https://doi.org/10.1016/j.cej.2018.02.034
  44. Y.L. Wu, R. Prulho, M. Brigante, W. Dong, K. Hann, G. Mailhot, J. Hazard. Mater. 322 (2017) 380. https://doi.org/10.1016/j.jhazmat.2016.10.013
  45. G.Y. Zhen, X.Q. Lu, L.H. Su, T. Kobayashi, K. Gopalakrishnan, T. Zhou, K.Q. Xue, Y. Y. Li, X.F. Zhu, Y.C. Zhao, Water Res. 134 (2018) 101. https://doi.org/10.1016/j.watres.2018.01.072
  46. D.H. Bremner, A.E. Burgess, D. Houllemare, K.C. Namkung, Appl. Catal. B: Environ. 63 (2006) 15. https://doi.org/10.1016/j.apcatb.2005.09.005
  47. S.X. Yu, X.G. Gu, S.G. Lu, Y.F. Xue, X. Zhang, M.H. Xu, Z.F. Qiu, Q. Sui, Chem. Eng. J. 333 (2018) 122. https://doi.org/10.1016/j.cej.2017.09.158
  48. P. Li, Z.P. Liu, X.G. Wang, Y.D. Guo, L.Z. Wang, Chemosphere 80 (2017) 100.
  49. Y.F. Xia, J.M. Hong, Y. Li, C.R. Jin, B.S. Huang, Technol. Water Treat. 41 (2015) 92.
  50. H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I.H. Ceribasi, F.D. Sanin, F.B. Dilek, U. Yetis, J. Hazard. Mater. 136 (2006) 258. https://doi.org/10.1016/j.jhazmat.2005.12.012
  51. A.S. Giri, A.K. Golder, Ind. Eng. Chem. Res. 53 (2014) 1351. https://doi.org/10.1021/ie402279q
  52. M.D.G. de Luna, M.L. Veciana, C.C. Su, M.C. Lu, J. Hazard. Mater. 217-218 (2012) 200. https://doi.org/10.1016/j.jhazmat.2012.03.018
  53. E. Brillas, I. Sireis, M.A. Oturan, Chem. Rev. 109 (2009) 6570. https://doi.org/10.1021/cr900136g
  54. L. Yang, L.E. Yu, M.B. Ray, Water Res. 42 (2008) 3480. https://doi.org/10.1016/j.watres.2008.04.023
  55. L. Yang, L.E. Yu, M.B. Ray, Environ. Sci. Technol 43 (2009) 460. https://doi.org/10.1021/es8020099
  56. C.T. Chang, J.J. Wang, T. Ouyang, Q. Zhang, Y.H. Jing, Mat. Sci. Eng.: B 196 (2015) 53. https://doi.org/10.1016/j.mseb.2014.12.025
  57. M.A. Patrauchan, P.J. Oriel, J. Appl. Microbiol. 94 (2003) 266. https://doi.org/10.1046/j.1365-2672.2003.01829.x
  58. H. Tao, X. Liang, Q. Zhang, C.T. Chang, Appl. Surf. Sci. 324 (2015) 258. https://doi.org/10.1016/j.apsusc.2014.10.129
  59. J.C. Yan, L. Han, W.G. Gao, S. Xue, M.F. Chen, Bioresour. Technol.175 (2015) 269. https://doi.org/10.1016/j.biortech.2014.10.103
  60. M.J. Pu, Y.W. Ma, J.Q. Wan, Y. Wang, J.M. Wang, M.L. Brusseau, Catal. Sci Technol. 7 (2017) 1129. https://doi.org/10.1039/C6CY02355J
  61. Z.H. Diao, X.R. Xu, D. Jiang, L.J. Kong, Y.X. Sun, Y.X. Hu, Q.W. Hao, H. Chen, Chem. Eng. J. 302 (2016) 213. https://doi.org/10.1016/j.cej.2016.05.062

Cited by

  1. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions vol.54, pp.1, 2018, https://doi.org/10.1021/acs.est.9b03736