DOI QR코드

DOI QR Code

Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations

  • Received : 2018.07.06
  • Accepted : 2018.10.04
  • Published : 2018.11.30

Abstract

We study lattice thermal conductivity of $Sb_2Te_3$ using molecular dynamics simulations. The interatomic potentials are fitted to reproduce total energy and elastic constants, and phonon properties calculated using the potentials are in reasonable agreement with first-principles calculations and experimental data. Our calculated lattice thermal conductivities of $Sb_2Te_3$ decrease with temperature from 150 K to 500 K. The in-plane lattice thermal conductivity of $Sb_2Te_3$ is higher than cross-plane lattice thermal conductivity of $Sb_2Te_3$, as in the case of $Bi_2Te_3$, which is consistent with the anisotropy of the elastic constants.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Science and Technology Information

References

  1. B-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008). https://doi.org/10.1103/PhysRevB.77.125209
  2. B. Qiu and X. Ruan, Phys. Rev. B 80, 165203 (2009). https://doi.org/10.1103/PhysRevB.80.165203
  3. N. A. Katcho, N. Mingo and D. A. Broido, Phys. Rev. B 85, 115208 (2012). https://doi.org/10.1103/PhysRevB.85.115208
  4. D. Campi, L. Paulatto, G. Fugallo, F. Mauri and M. Bernasconi, Phys. Rev. B 95, 024311 (2017). https://doi.org/10.1103/PhysRevB.95.024311
  5. S. Plimpton, J. Comp. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039
  6. J. D. Gale, JCS Faraday Trans. 93, 629 (1997). https://doi.org/10.1039/a606455h
  7. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  8. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  9. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021
  10. T. L. Anderson and H. B. Krause, Acta Cryst. B 30, 1307 (1974). https://doi.org/10.1107/S0567740874004729
  11. F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244
  12. Non-Tetrahedrally Bonded Elements and Binary Compounds I, edited by O. Madelung, U. Rossler and M. Schulz, Landolt-Bornstein - Group III Condensed Matter, Vol. 41C (Springer-Verlag, Heidelberg, 1998).
  13. H. Rauh, R. Geick, H. Kohler, N. Nucker and N. Lehner, J. Phys. C: Solid State Phys., 14, 2705 (1981). https://doi.org/10.1088/0022-3719/14/20/009
  14. D. Bessas, I. Sergueev, H-C. Wille, J. PerBon, D. Ebling and R. P. Hermann, Phys. Rev. B 86, 224301 (2012). https://doi.org/10.1103/PhysRevB.86.224301
  15. H. J. Goldsmid, J. Appl. Phys. 32, 2198 (1961). https://doi.org/10.1063/1.1777042

Cited by

  1. Complex Band Structures and Lattice Dynamics of Bi2Te3‐Based Compounds and Solid Solutions vol.29, pp.28, 2018, https://doi.org/10.1002/adfm.201900677
  2. Effects of van der Waals interactions on the phonon transport properties of tetradymite compounds vol.23, pp.8, 2021, https://doi.org/10.1088/1367-2630/ac1553
  3. Simulation of Phase‐Change‐Memory and Thermoelectric Materials using Machine‐Learned Interatomic Potentials: Sb2Te3 vol.258, pp.9, 2018, https://doi.org/10.1002/pssb.202000416