DOI QR코드

DOI QR Code

Surface Strain Effects on the Adsorption of Au Adatoms on MgO(001) Surfaces with Surface O Vacancies

  • Received : 2018.09.13
  • Published : 2018.11.15

Abstract

By employing ab-initio total-energy and electronic-structure calculations based on the density-functional theory, we studied the effects of surface strain ${\varepsilon}_s$ on the adsorption properties of a Au adatom on defective MgO(001) surfaces with surface oxygen vacancies ($F_s$ centers). The formation energy of the $F_s$ center on MgO(001) varied very slightly in the region of ${\varepsilon}_s$ from -6% to -4% and monotonically decreased with the increase in ${\varepsilon}_s$, from -4% to +6%. As ${\varepsilon}_s$ increased, the adsorption energy ($E^{Fs}_{ads}$) of Au on the $F_s$ center of strained MgO(001) monotonically decreased and, in particular, showed a much larger decrease in $E^{Fs}_{ads}$ for a tensile surface strain of ${\varepsilon}_s$ > +4%. The surface strain dependence on the physical properties, such as the charge states, the spatial charge rearrangement, for Au on the $F_s$ center of strained MgO(001) surfaces was also analyzed. These results provide important physical information on the effects of surface strain on the adsorption of Au on MgO(001) surfaces with $F_s$ centers.

Keywords

Acknowledgement

Supported by : University of Seoul

References

  1. G. C. Bond and D. T. Thompson, Gold Bull. 33, 41 (2000). https://doi.org/10.1007/BF03216579
  2. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115, 301 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  3. J. Jeon, A. Soon, J. N. Yeo, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 81, 054601 (2012). https://doi.org/10.1143/JPSJ.81.054601
  4. J. Jeon, A. Soon, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 82, 034603 (2013). https://doi.org/10.7566/JPSJ.82.034603
  5. T. Urano and T. Kanaji, J. Phys. Soc. Jpn. 57, 3403 (1988). https://doi.org/10.1143/JPSJ.57.3403
  6. S. Yuasa, J. Phys. Soc. Jpn. 77, 031001 (2008). https://doi.org/10.1143/JPSJ.77.031001
  7. B. D. Yu and J. S. Kim, Phys. Rev. B 73, 125408 (2006). https://doi.org/10.1103/PhysRevB.73.125408
  8. J. N. Yeo, G. M. Jee, B. D. Yu and B. C. Choi, J. Korean Phys. Soc. 52, 1938 (2008). https://doi.org/10.3938/jkps.52.1938
  9. J. Park and B. D. Yu, Phys. Rev. B 83, 144431 (2011). https://doi.org/10.1103/PhysRevB.83.144431
  10. M. Haruta, Catal. Today 36, 153 (1997). https://doi.org/10.1016/S0920-5861(96)00208-8
  11. M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998). https://doi.org/10.1126/science.281.5383.1647
  12. M. S. Chen and D. W. Goodman, Science 306, 252 (2004). https://doi.org/10.1126/science.1102420
  13. B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai and U. Heiz, Science 307, 403 (2005). https://doi.org/10.1126/science.1104168
  14. J. Park, B. D. Yu and H. Kim, Phys. Rev. B 79, 233407 (2009). https://doi.org/10.1103/PhysRevB.79.233407
  15. G. Pacchioni, L. Giordano and M. Baistrocchi, Phys. Rev. Lett. 94, 226104 (2005). https://doi.org/10.1103/PhysRevLett.94.226104
  16. J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 074718 (2010). https://doi.org/10.1143/JPSJ.79.074718
  17. A. V. Matveev, K. M. Neyman, I. V. Yudanov and N. Rosch, Surf. Sci. 426, 123 (1999). https://doi.org/10.1016/S0039-6028(99)00327-1
  18. J. Park and B. D. Yu, J. Korean Phys. Soc. 53, 1976 (2008). https://doi.org/10.3938/jkps.53.1976
  19. J. Jeon and B. D. Yu, J. Korean Phys. Soc. 62, 79 (2013). https://doi.org/10.3938/jkps.62.79
  20. J. Jeon and B. D. Yu, J. Korean Phys. Soc. 64, 554 (2014). https://doi.org/10.3938/jkps.64.554
  21. G. Barcaro and A. Fortunelli, New J. Phys. 9, 22 (2007). https://doi.org/10.1088/1367-2630/9/2/022
  22. Y.-R. Jang, J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 124703 (2010). https://doi.org/10.1143/JPSJ.79.124703
  23. A. Bogicevic and D. R. Jennison, Surf. Sci. 437, L741 (1999). https://doi.org/10.1016/S0039-6028(99)00746-3
  24. A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Hakkinen, R. N. Barnett and U. Landman, J. Phys. Chem. A 103, 9573 (1999). https://doi.org/10.1021/jp9935992
  25. P. Frondelius, H. Hakkinen and K. Honkala, New J. Phys. 9, 339 (2007). https://doi.org/10.1088/1367-2630/9/9/339
  26. J. Park, I. Park and B. D. Yu, J. Korean Phys. Soc. 54, 109 (2009). https://doi.org/10.3938/jkps.54.109
  27. B. D. Yu and M. Scheffler, Phys. Rev. B 56, 15569 (1997). https://doi.org/10.1103/PhysRevB.56.R15569
  28. J. Jeon, B. D. Yu and S. Hyun, J. Korean Phys. Soc. 69, 1776 (2016). https://doi.org/10.3938/jkps.69.1776
  29. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  30. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  31. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  32. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  33. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  34. P. E. Blochl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  35. R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965).
  36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  37. Z. Yang, R. Wu, Q. Zhang and D. Goodman, Phys. Rev. B 65, 155407 (2002). https://doi.org/10.1103/PhysRevB.65.155407
  38. B. D. Yu, Phys. Rev. B 71, 193403 (2005). https://doi.org/10.1103/PhysRevB.71.193403
  39. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, New York, 1990).
  40. G. Henkelman, A. Arnaldsson and H. Jonsson, Comput. Mater. Sci. 36, 354 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
  41. W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204