DOI QR코드

DOI QR Code

Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy

AZ91 마그네슘 합금에서 노냉으로 생성된 불연속 석출물의 미세조직 특징

  • Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합공정소재그룹)
  • Received : 2018.08.22
  • Accepted : 2018.09.06
  • Published : 2018.09.30

Abstract

The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. A. K. Dahle, D. H. StJohn and G. L. Dunlop : Mater. Firum 24 (2000) 167. https://doi.org/10.1002/1099-1018(200007/08)24:4<167::AID-FAM735>3.0.CO;2-4
  3. K. Hono, C. L. Mendis, T. T. Sasaki and K. Oh-ishi : Scripta Mater. 63 (2010) 710. https://doi.org/10.1016/j.scriptamat.2010.01.038
  4. K. N. Braszczynska-Malik : Arch. Found. Engineering 8 (2008) 19.
  5. M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave and G. L. Dunlop : Mater. Trans. 47 (2006) 977. https://doi.org/10.2320/matertrans.47.977
  6. W. Zheng, S. Li, B. Tand and D. Zeng : China Found. 3 (2006 )270.
  7. C. Lv, T. Liu, D. Liu, S. Jiang and W. Zeng : Mater. Des. 33 (2012) 529. https://doi.org/10.1016/j.matdes.2011.04.060
  8. W. Zhou, T. Shen and N. N. Aung : Corros. Sci. 52 (2010) 1035. https://doi.org/10.1016/j.corsci.2009.11.030
  9. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107. https://doi.org/10.1007/s10853-013-8012-3
  10. K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  11. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  12. S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470. https://doi.org/10.2464/jilm.64.470
  13. M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  14. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  15. N. Ridley : Metall. Trans. A 15A (1984) 1019.
  16. C. Zener : Trans. AIME 167 (1946) 550.
  17. J. H. Jun : J. Alloys Compd. 75 (2017) 237.