DOI QR코드

DOI QR Code

Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy

주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동

  • Han, Jin-Gu (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Hyun, Soong-Keun (Department of Materials Science and Engineering, Inha University) ;
  • Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
  • 한진구 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹) ;
  • 현승균 (인하대학교 공과대학 신소재공학과) ;
  • 전중환 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹)
  • Received : 2018.08.07
  • Accepted : 2018.09.06
  • Published : 2018.09.30

Abstract

The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

Keywords

References

  1. B. L. Mordike and T. Ebert : Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. L. J. Liu and M. Schlesinger : Corros. Sci. 51 (2009) 1733. https://doi.org/10.1016/j.corsci.2009.04.025
  3. G. L. Song and A. Atrens : Adv. Eng. Mater. 5 (2003) 837. https://doi.org/10.1002/adem.200310405
  4. W. C. Zheng, S. S. Li, B. Tang and D. B. Zeng : China Foundry 3 (2006) 270.
  5. G. Ballerini, U. Bardi, R. Bignucolo and G. Ceraolo : Corros. Sci. 47 (2005) 2173. https://doi.org/10.1016/j.corsci.2004.09.018
  6. D. Sachdava : Corros. Sci. 60 (2012) 18. https://doi.org/10.1016/j.corsci.2012.04.016
  7. G. M. Han, Z. Q. Han, A. A. Luo and B. C. Liu : J. Alloys Compd. 641 (2015) 248.
  8. I. A. Yakubtsov, B. J. Diak, C. A. Sager, B. Bhattacharya, W. D. MacDonald and M. Niewczas : Mater. Sci. Eng. A 496 (2008) 247. https://doi.org/10.1016/j.msea.2008.05.019
  9. J. H. Moon and J. H. Jun : J. Kor. Soc. Heat Treat. 28 (2015) 190. https://doi.org/10.12656/jksht.2015.28.4.190
  10. Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding, Y. Zhu, X. Xu and M. Mabuchi : J. Mater. Sci. 36 (2001) 3035. https://doi.org/10.1023/A:1017927109291
  11. J. H. Jun and J. H. Moon : Met. Mater. Int. 21 (2015) 780. https://doi.org/10.1007/s12540-015-4367-0
  12. Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai and Y. Zhu : Mater. Sci. Eng. A 278 (2000) 66. https://doi.org/10.1016/S0921-5093(99)00604-8
  13. M. Mokhtarishirazabad, S. M. A. Boutorabi, M. Azadi and M. Nikravan : Mater. Sci. Eng. A 587 (2013) 179. https://doi.org/10.1016/j.msea.2013.08.075
  14. M. C. Zhao, P. Schmutz, S. Brunner, M. Liu, G. L. Song and A. Atrens : Corros. Sci. 51 (2009) 1277. https://doi.org/10.1016/j.corsci.2009.03.014
  15. Z. Shi, M. Liu and A. Atrens : Corros. Sci. 52 (2010) 579. https://doi.org/10.1016/j.corsci.2009.10.016
  16. Z. Shi and A. Atrens : Corros. Sci. 53 (2011) 226. https://doi.org/10.1016/j.corsci.2010.09.016
  17. K. N. Braszczynska-Malik : J. Alloys Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  18. N. Hort, Y. Huang and K. U. Kainer : Adv. Eng. Mater. 8 (2006) 235. https://doi.org/10.1002/adem.200500202
  19. H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani and M. Medraj : Mater. Corros. 65 (2014) 1178. https://doi.org/10.1002/maco.201307588
  20. S. Izumi, M. Yamasaki and Y. Kawamura : Corros. Sci. 51 (2009) 395. https://doi.org/10.1016/j.corsci.2008.11.003
  21. Y. Song, E. H. Han, D. Shan, C. D. Yim and B. S. You : Corros. Sci. 65 (2012) 322. https://doi.org/10.1016/j.corsci.2012.08.037
  22. J. T. Kim, H. S. Jeong, S. S. Ryu, G. D. Lee and J. M. Park : Kor. Chem. Eng. Res. 49 (2011) 745. https://doi.org/10.9713/kcer.2011.49.6.745
  23. N. B. Pilling and R. E. Bedworth : J. Inst. Met. 29 (2012) 529.
  24. R. Ambat, N. N. Aung and W. Zhou : J. Appl. Electrochem. 30 (2000) 865. https://doi.org/10.1023/A:1004011916609
  25. M. S. Kim : J. Corros. Sci. Soc. Kor. 1 (1080) 24.