DOI QR코드

DOI QR Code

Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12

Variovorax sp. PMC12 균주에 의한 토마토의 생물학 및 비생물학적 스트레스 저항성 증진

  • Kim, Hyeon Su (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Shin Ae (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Yiseul (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sang, Mee kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Chae, Jong-Chan (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 김현수 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과) ;
  • 이신애 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과) ;
  • 김이슬 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과) ;
  • 채종찬 (전북대학교 환경생명자원대학 생명공학부) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업생물부 농업미생물과)
  • Received : 2018.08.10
  • Accepted : 2018.09.02
  • Published : 2018.09.30

Abstract

Rhizobacteria play important roles in plant growth and health enhancement and render them resistant to not only biotic stresses but also abiotic stresses, such as low/high temperature, drought, and salinity. This study aimed to select plant growth promoting rhizobacteria (PGPR) with the capability to mitigate biotic and abiotic stress effects on tomato plants. We isolated a novel PGPR strain, Variovorax sp. PMC12 from tomato rhizosphere. An in vitro assay indicated that strain PMC12 produced ammonia, indole-3-acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which are well-known traits of PGPR. The aboveground fresh weight was significantly higher in tomato plants treated with strain PMC12 than in non-treated tomato plants under various abiotic stress conditions including salinity, low temperature, and drought. Furthermore, strain PMC12 also enhanced the resistance to bacterial wilt disease caused by Ralstonia solanacearum. Taken together, these results indicated that strain PMC12 is a promising biocontrol agent and a biostimulant to reduce the susceptibility of plants to both abiotic and biotic stresses.

근권세균은 식물 생육과 건강 증진에 중요한 역할을 하며 생물학적 스트레스뿐만 아니라 저온, 고온, 건조 및 염과 같은 비생물적 스트레스에도 내성을 부여한다. 본 연구는 토마토에 생물적 및 비생물적 스트레스를 완화시키는 기능을 가진 식물생장촉진 근권세균(plant growth promoting rhizobacteria, PGPR)을 선발하는 것을 목표로 하였으며 토마토 근권에서 Variovorax sp. PMC12균주를 분리하였다. PMC12균주는 in vitro에서 PGPR의 특성으로 알려진 암모니아, IAA, 시드로포아 및 ACC 탈아민효소를 생성하였다. PMC12 균주를 처리한 토마토는 대조구에 비해 염, 저온 및 건조 스트레스 조건에서 지상부 생체중이 유의적으로 높았다. 또한 PMC12 균주를 처리한 토마토는 Ralstonia solanacearum에 의한 세균성 시들음병에 대한 저항성이 증가되었다. 결과적으로 PMC12 균주는 식물의 비생물적 스트레스 및 생물적 스트레스에 대한 감수성을 감소시키는 유망한 생물학적 방제제 및 생물활성제로 사용될 수 있을 것으로 전망된다.

Keywords

References

  1. Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054. https://doi.org/10.1104/pp.107.4.1049
  2. Arshad, M., Shaharoona, B. and Mahmood, T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611-620. https://doi.org/10.1016/S1002-0160(08)60055-7
  3. Basar, G. and Bhat, C. 2004. A parameterized consideration set model for airport choice: an application to the san francisco bay area. Transport. Res. B Meth. 38: 889-904. https://doi.org/10.1016/j.trb.2004.01.001
  4. Bohnert, H. J., Gong, Q., Li, P. and Ma, S. 2006. Unraveling abiotic stress tolerance mechanisms-Getting genomics going. Curr. Opin. Plant Biol. 9: 180-188. https://doi.org/10.1016/j.pbi.2006.01.003
  5. Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448. https://doi.org/10.1126/science.218.4571.443
  6. Chen, F., Gao, Y., Chen, X., Yu, Z. and Li, X. 2013. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int. J. Mol. Sci. 14: 17477-17500. https://doi.org/10.3390/ijms140917477
  7. De Freitas, J. R., Banerjee, M. R. and Germida, J. J. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fert. Soils 24: 358-364. https://doi.org/10.1007/s003740050258
  8. Dey, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159: 371-394. https://doi.org/10.1016/j.micres.2004.08.004
  9. Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
  10. Gallegly, M. E. and Walker, J. C. 1949. Relation of environmental factors to bacterial wilt of tomato. Phytopathology 39: 936-946.
  11. Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1-7. https://doi.org/10.1016/j.femsle.2005.07.030
  12. Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
  13. Gordon, S. A. and Paleg, L. G. 1957. Observations on the quantitative determination of indoleacetic acid. Physiol. Plant. 10: 39-47. https://doi.org/10.1111/j.1399-3054.1957.tb07608.x
  14. Gross, D. and Parthier, B. 1994. Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13: 93. https://doi.org/10.1007/BF00210953
  15. Han, J. I., Spain, J. C., Leadbetter, J. R., Ovchinnikova, G., Goodwin, L. A., Han, C. S. et al. 2013. Genome of the root-associated plant growth-promoting bacterium Variovorax paradoxus strain EPS. Genome Announc. 1: e00843-13.
  16. Hassen, W., Neifar, M., Cherif, H., Najjari, A., Chouchane, H., Driouich, R. C. et al. 2018. Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front. Microbiol. 9: 34. https://doi.org/10.3389/fmicb.2018.00034
  17. Horchani, F., Hajri, R. and Aschi-Smiti, S. 2010. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. J. Plant Nutr. Soil Sci. 173: 610-617. https://doi.org/10.1002/jpln.201000055
  18. Jung, H. K., Kim, J. R., Woo, S. M. and Kim, S. D. 2007. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Korean Soc. Appl. Biol. Chem. 50: 23-28. (In Korean)
  19. Kang, B. G., Lee, S. Y., Lim, S. C., Kim, Y. S., Hong, S. D., Chung, K. Y. et al. 2011. Establishment of application level for the proper use of organic materials as the carbonaceous amendments in the greenhouse soil. Korean J. Soil Sci. Fert. 44: 248-255. (In Korean) https://doi.org/10.7745/KJSSF.2011.44.2.248
  20. Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M. and Lee, I. J. 2014. Environmental microbiology and engineering : gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol. 24: 106-112. https://doi.org/10.4014/jmb.1304.04015
  21. Leadbetter, J. R. and Greenberg, E. P. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  22. Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. and Schippers, B. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101: 655-664. https://doi.org/10.1007/BF01874869
  23. Liu, F., Xing, S., Ma, H., Du, Z. and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164. https://doi.org/10.1007/s00253-013-5193-2
  24. Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A. et al. 2017. Biofertilizers: a potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. Int. 24: 3315-3335. https://doi.org/10.1007/s11356-016-8104-0
  25. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. https://doi.org/10.1111/1574-6976.12028
  26. Ministry of Agriculture, Food and Rural Affairs. 2016. Agriculture, Food and Rural Affairs Statistics Yearbook 2016. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea. 559 pp.
  27. Onyia, C. E. and Anyanwu, C. U. 2013. Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from nsukka pepper plant rhizosphere and root free soil. J. Yeast Fungal Res. 4: 52-57.
  28. Patel, T. and Saraf, M. 2017. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J. Plant Interact. 12: 480-487. https://doi.org/10.1080/17429145.2017.1392625
  29. Penrose, D. M. and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  30. Pierik, R., Sasidharan, R. and Voesenek, L. A. C. J. 2007. Growth control by ethylene: adjusting phenotypes to the environment. J. Plant Growth Regul. 26: 188-200. https://doi.org/10.1007/s00344-006-0124-4
  31. Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1986. Microbial responses to salt-induced osmotic stress . Plant Soil 92: 471-425. https://doi.org/10.1007/BF02372489
  32. Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. https://doi.org/10.1007/s10295-007-0240-6
  33. Satake, T. and Koike, S. 1983. Sterility caused by cooling treatment at the flowering stage in rice plants : I. the stage and organ susceptible to cool temperature. Jpn. J. Crop Sci. 52: 207-214. https://doi.org/10.1626/jcs.52.207
  34. Schroth, M. and Hancock, J. 1982. Disease-suppressive soil and root-colonizing bacteria. Science 216: 1376-1381. https://doi.org/10.1126/science.216.4553.1376
  35. Shin, S. H., Lim, Y., Lee, S. E., Yang, N. W. and Rhee, J. H. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44: 89-95. https://doi.org/10.1016/S0167-7012(00)00229-3
  36. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 611-651. American Society for Microbiology, Washington, USA.
  37. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27-58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  38. So, J. H., Kim, D. J., Shin, J. H., Yu, C. B. and Rhee, I. K. 2009. Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes. Korean J. Environ. Agric. 28: 447-452. (In Korean) https://doi.org/10.5338/KJEA.2009.28.4.447
  39. Tahat, M. M. and Sijam, K. 2010. Ralstonia solanacearum: The bacterial wilt causal agent. Asian J. Plant Sci. 9: 385-393. https://doi.org/10.3923/ajps.2010.385.393
  40. Van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by Rhizoshere bacteria. Ann. Rev. Phytophathol. 36: 453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  41. Viveganandan, G. and Jauhri, K. S. 2002. Efficacy of a rock phosphate based soil implant formulation of phosphobacteria in soybean (Glycine max Merrill). Indian J. Biotechnol. 1: 180-187.
  42. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  43. Wang, C. Y. 1989. Chilling injury of fruits and vegetables. Food Rev. Int. 5: 209-236. https://doi.org/10.1080/87559128909540850
  44. Yoo, S. J., Shin, D. J., Weon, H. Y., Song, J. and Sang, M. K. 2018 . Selection of bacteria for enhancement of tolerance to salinity and temperature stresses in tomato plants. Korean J. Org. Agric. 26: 463-475. https://doi.org/10.11625/KJOA.2018.26.3.463