DOI QR코드

DOI QR Code

개방형에 따른 사방댐의 투과율 및 생태적 기능 분석

Analysis of Ecological Function and Percent Passing of Erosion Control Dam by Openness

  • 구길본 (한국임업진흥원) ;
  • 마호섭 (경상대학교 산림환경자원학과(농업생명과학연구원))
  • Koo, Gil-Bon (Korea Forestry Promotion Institute) ;
  • Ma, Ho-Seop (Department of Forest Environment Resources, Gyeongsang National University(Institute of Agriculture & Life Science))
  • 투고 : 2018.04.10
  • 심사 : 2018.06.27
  • 발행 : 2018.12.31

초록

본 연구는 산지계류에 시설되는 사방댐의 투과정도를 파악하고, 이를 바탕으로 재해예방과 생물종 다양성에 대한 적절한 보호 및 관리를 위하여 개방형에 따른 사방댐의 생태적 기능을 분석한 결과를 요약하면 다음과 같다. 투과율이 15% 미만인 불투과형 중력식 댐은 투과형 댐으로 구조개량 하거나 전환할 경우 투과율이 0.72%에서 55.8%로 약 77배 이상 증가하는 것으로 나타났다. 저사 및 저수 등 특별한 목적을 두고 시공하는 불투과형 중력식 사방댐을 제외하고는 하류지역으로 토사의 이동, 어류 및 양서류의 상 하류에의 생태통로 등 다양한 기능을 비교적 양호하게 할 수 있는 투과형으로 개선하여 시공할 필요성이 있다. 사방댐 차단높이에 따른 개방은 유효고, 기초부의 높이 및 하부기초 부분의 매몰정도에 따라 다르므로 현장여건 및 시공목적에 따라 설계할 필요성이 있다. 횡단면의 개방형태에 따른 사방댐의 생태적 기능은 어류소통형, 홍수조절형, 저수형(산불방지취수형), 토석막이형(저사형), 토석막이형(토석형) 및 입도분석형으로 제시하였다.

This study was conducted to analyze the openness of erosion control dams situated near mountain stream. The ecological functions of erosion control dams analyzed by such openness for adequately protect and manage the diversity of species and to prevent disasters. The obtained results were as follows. When structurally modifying or changing non-permeable, gravity type dams with a passing rate of less than 1% into open-type dams, the passing rate increased by about 77 times more from 0.72% to 55.8%. Except for closed, gravity type erosion control dams that are constructed with a special purpose such as creating sand deposits and reservoirs, there is a need to construct and improve the dams into permeable type dams that can relatively satisfactorily perform various functions such as carrying soil and sand to the downstream region and create a ecological corridor upstream and downstream for fish and amphibians. The openness based on the blocking height of the erosion control dam varies depending upon the height of the base part and the depth of the substructural part. It must be designed based on the on-site conditions and the purpose of the construction. The functional types of erosion control dams based on the open form of the cross-section as follows: the fish traffic type, flood control type, reservoir type for forest fire control), non-permeability type for soil and rock blocking, net type for blocking the rock flow and the particle screen type.

키워드

과제정보

연구 과제 주관 기관 : 산림청

참고문헌

  1. Kenneth NB, Peter FF, Hans MG and John LT. 1993. Hydrology and the Management of Watersheds. Iowa State University. press. pp.392.
  2. Kim GJ. 2008. Environmentally-friendliness evaluation of debris barrier(focusing on Gyeonggi Area). Master Thesis Cheongju Univ., Cheongju, Korea.
  3. Kim KH, Park JH and Ma HS. 2012. Applicability evaluation of tetrapod debris barrier. J. of the Korea Society of Environment Restoration Technology. 15: 119-132.
  4. Kim JY. 2009. A study on the policy and situation of sediment check dams Case of Gangwon Province, Korea. J. of the Korean Geo. Ass. 16: 131-144.
  5. Koo GB. 2011. Development of ecosystem connection necessity model for site suitability evaluation of erosion control dam on stream corridors. Ph. D. Thesis, Gyeongsang Univ., Jinju, Korea.
  6. Ma HS and Jeong WO. 2007. Suitable site prediction of erosion control dam by sediment. J. of Korean Forest Society. 96: 300-306.
  7. Ma HS, Park JH and Kang WS. 2013. Changes of cluster index of benthic macroinvertebrates by construction of buttress erosion control dam in torrent. J. Agric. Life. Sci. 48: 55-62.
  8. Ma HS, Jeong WO and Kang WS. 2014. Effects on the habitats of benthic macroinvertebrates by construction of erosion structures in mountains stream. J. Agric. Life. Sci. 47: 15-21.
  9. Ministry of Agricultural and Forestry. 2007. Development of environment-friendly erosion control techniques for ecosystem conservation in torrent. pp.147-187.
  10. Ministry of Construction. 2000. Technical guidelines for debris flow control measures. pp.32.
  11. Nakayama Y. 1985. Mapping of mass movement in central Japan. International Symposium on Erosion, Debris Flow and Disaster Prevention September 3-6, 1985, Tsukuba, Japan. pp.487-492.
  12. Nishio K and Kawabe H. 1985. Electrokinetic phenomena in water-soil systems of landslides and swelling phenomena in clay. International Symposium on Erosion, Debris Flow and Disaster Prevention September 3-5, 1985, Tsukuba, Japan. pp.351-354.
  13. Petts GE and Gurnell AM. 2005. Dams and geomorphology: research progress and future directions. Geomorphology Journal. 71: 27-47. https://doi.org/10.1016/j.geomorph.2004.02.015
  14. Poff NL and Hart DD. 2002. How dams vary and why it matters for the emerging science of dam removal. Bioscience. 52: 659-668. https://doi.org/10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2
  15. Romero-Diaz A, Alonso-Sarria F and Martinez-Lloris M. 2007. Erosion rates obtained from check-dam sedimentation(SE Spain). A multi-method comparison. 172-178.
  16. Rood SB, Samuelson GM, Braatne JH. Gourley CR, Hughes FMR and Mahoney JM. 2005. Managing river flows to restore floodplain forests. Frontiers in Ecology and the Environment. 3: 193-201. https://doi.org/10.1890/1540-9295(2005)003[0193:MRFTRF]2.0.CO;2
  17. Center for Design Control of Sabo and Landslide. 1987. Sansaedang. pp.276.
  18. Todsapon K and Chitchol P. 2012. Effects of check dams on water quality and macroinvertebrate diversity of Hom Jom stream, Lamphun Province, Thailand. Suranaree Journal of Science and Technology. 19: 113-123.

피인용 문헌

  1. 사방댐이 설치된 산지계곡의 장마 전·후 저서성 대형무척추동물 군집변화 vol.34, pp.2, 2018, https://doi.org/10.13047/kjee.2020.34.2.121
  2. 연속적인 사방댐이 장마 전·후 저서성 대형무척추동물 군집에 미치는 영향 비교 vol.8, pp.1, 2018, https://doi.org/10.17820/eri.2021.8.1.054