References
- Arakawa, A., 1972, Design of the UCLA general circulation model. UCLA Meteorology Department Tech. Rep. 7, 116 pp.
- Arakawa, A., and Lamb, V.R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, Vol. 17, J. Chang, Ed., Academic Press, 173-265.
- Browning, G.L., Hack, J.J., and Swarztrauber, P.N., 1989, A comparison of three numerical methods for solving differential equations on the sphere. Monthly Weather Review, 117, 1058-1075. https://doi.org/10.1175/1520-0493(1989)117<1058:ACOTNM>2.0.CO;2
- Cheong, H.B., 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Monthly Weather Review, 134, 1299-1315. https://doi.org/10.1175/MWR3121.1
- Cheong, H.B., Kong, H.J., Kang, H.G., and Lee, J.D., 2015, Fourier finite-element method with linear basis functions on a sphere: Application to elliptic and transport equations. Monthly Weather Review, 143, 1275-1294. https://doi.org/10.1175/MWR-D-14-00093.1
- Cheong, H.B. and Park, J.R., 2007, Geopotential field in nonlinear balance with the sectoral mode of Rossby-Haurwitz wave on the inclined rotation axis. Journal of the Korean Earth Science Society, 28, 936-946. https://doi.org/10.5467/JKESS.2007.28.7.936
- Choi, S.J, and Hong, S.Y., 2016, A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia Pacific Journal of Atmospheric Sciences, 52, 291-307. https://doi.org/10.1007/s13143-016-0005-0
- Durran, D.R., 1999, Numerical methods for wave equations in geophysical fluid dynamics. Springer, 465pp.
- Flyer, N., and Wright, G.B., 2007, Transport schemes on a sphere using radial basis functions. J. Computational Physics, 226, 1059-1084. https://doi.org/10.1016/j.jcp.2007.05.009
- Gal-Chen, T., and Somerville, R., 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. Journal of Computational Physics, 17, 209-228. https://doi.org/10.1016/0021-9991(75)90037-6
- Gates, W.L., 1992, AMIP: The Atmospheric Model Intercomparison Project. Bulletin of American Meteorological Society, 73, 1962-1970. https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
- Haiden, T., Janousek, M., Bidlot, J.R., Ferranti, L., Prates, F., Vitart, F., Bauer, P., and Richardson, D., 2017, Evaluation of ECMWF forecasts, including 2016-2017 upgrades. Technical Memorandum 817, ECMWF, 58 pp.
- Haltiner, G.J., and Williams, R.T., 1980, Numerical weather prediction and dynamic meteorology. John Wiley and Sons, 477 pp.
- Hoskins, B.J., and Simmons, A.J., 1975, A multilayer spectral model and the semiimplicit method. Quarterly Journal of Royal Meteorological Society, 101, 637-655. https://doi.org/10.1002/qj.49710142918
- Kang, H.G., and Cheong, H.B., 2017, An efficient implementation of a high-order filter for a cubed-sphere spectral element model. J. Computational Physics, 332, 66-82. https://doi.org/10.1016/j.jcp.2016.12.001
- Kang, H.G., and Cheong, H.B., 2018, Effect of high-order filter on a cubed-sphere spectral element dynamical core. Monthly Weather Review, 146, 2047-2064. https://doi.org/10.1175/MWR-D-17-0226.1
- Klemp, J.B., 2011, A Terrain-Following Coordinate with Smoothed Coordinate Surfaces. Monthly Weather Review, 139, 2163-2169. https://doi.org/10.1175/MWR-D-10-05046.1
- Leuenberger, D., Koller, M., Fuhrer, O., and Schr, C., 2010, A generalization of the SLEVE vertical coordinate. Monthly Weather Review, 138, 3683-3689. https://doi.org/10.1175/2010MWR3307.1
- Marras, S.M., Kopera, A., and Giraldo, F.X., 2015, Simulation of shallow-water jets with a unified elementbased continuous/discontinuous Galerkin model with grid flexibility on the sphere. Quarterly Journal of Royal Meteorological Society, 141, 1727-1739. https://doi.org/10.1002/qj.2474
- Nair, R.D., Thomas, S.J., and Loft, R.D., 2005, A discontinuous Galerkin transport scheme on the cubedsphere. Monthly Weather Review, 133, 814-828. https://doi.org/10.1175/MWR2890.1
- Rivier, L., Loft, R., and Polvani, L.M., 2002, An efficient spectral dynamical core for distributed memory computers. Monthly Weather Review, 130, 1384-1396. https://doi.org/10.1175/1520-0493(2002)130<1384:AESDCF>2.0.CO;2
- Saito, K., Fujita, T., Yamada, Y., Ishida, J.I., Kumagai, Y., Aranami, K., Ohmori, S., Nagasawa, R.,. Kumagai, S., Muroi, C., Kato, T., Eito, H., and Yamazaki, Y., 2006, The operational JMA nonhydrostatic mesoscale model. Monthly Weather Review, 134, 1266-1298. https://doi.org/10.1175/MWR3120.1
- Simmons, A.J., and Burridge, D.M., 1981, An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Monthly Weather Review, 109, 758-766. https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2
- Skamarock, W.C., and Klemp, J.B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Computational Physics, 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
- Smagorinsky, J., 1963, General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- Tomita, H., and Satoh, M., 2004, A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dynamics Research, 34, 357-400. https://doi.org/10.1016/j.fluiddyn.2004.03.003
- Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., and Swarztrauber, P.N., 1992, A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Computational Physics, 102, 211-224. https://doi.org/10.1016/S0021-9991(05)80016-6
- Zhang, H., and Rancic, M., 2007, A global eta model on quasi-uniform grids. Quarterly Journal of Royal Meteorological Society, 133, 517-528. https://doi.org/10.1002/qj.17