DOI QR코드

DOI QR Code

Total Wood Volume Equations for Tectona Grandis Linn F. Stands in Gujarat, India

  • Received : 2017.12.02
  • Accepted : 2018.05.06
  • Published : 2018.08.31

Abstract

Tectona grandis (teak) is one of the most important timber species worldwide and India is one of the major teak growing countries. Though some volume equations were developed for teak in India but the models developed were neither evaluated using robust statistical criteria nor validated. Hence, the objective of this study was to develop statistically tested appropriate volume equation to predict total wood volume (over- and under-bark) for teak trees in Gujarat. A total of 41 trees with age varying from 15 to 33 years and diameter at breast height (dbh) from 7.3 to 30.8 cm were felled for the purpose. Linear and non-linear equations were used to model the relationship of the total wood volume with respect to dbh and total height. The equations tested mostly fitted well to the data. Model evaluation and validation indicated that models should be calibrated with local data for greater accuracy in the prediction.

Keywords

References

  1. Avery TE, Burkhart HE. 1994. Forest Measurements. 4th ed. McGraw-Hill, New York.
  2. Bhat KM. 2000. Timber quality of teak from managed tropical plantations with special reference to Indian plantations. Bois et Forets des Tropiques 263(1): 6-15.
  3. Bi H, Hamilton F. 1998. Stem volume equations for native tree species in southern New South Wales and Victoria. Australian Forestry 61(4): 275-286. https://doi.org/10.1080/00049158.1998.10674752
  4. Burnham KP, Andarson DR. 1998. Model Selection and Inference: A Practical Information-Theoretical Approach. NY Springer New York, New York.
  5. Camacho P, Madrigal T. 1997. Ecuaciones de volumen preliminares para Tectona grandis. III Congreso Forestal nacional. 12-29 de Agosto. San Jose, Costa Rica, pp 131-133.
  6. Cao QV, Burkhart HE, Max TA. 1980. Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science 26: 71-80.
  7. Chakrbarti SK, Gaharwar KS. 1995. A study on volume estimation for Indian teak. Indian Forester 121(6): 503-509.
  8. Chaturvedi AN. 1973. General standard volume tables and height-diameter relationship for teak. Indian Forest Record 12(8): 1-8.
  9. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL. 1983. Timber Management: A Quantitative Approach. Wiley, New York.
  10. Gadow KV, Hui GY. 1999. Modelling Forest Development. Kluwer, Dordrecht.
  11. Gonzales LL. 1985. Growth and yield prediction model for teak (Tectona grandis Linn.) plantations in the Magat experimental forest Part I. Tree volume equations and tables. Sylvatrop: The Philippine Forest Research Journal 10(4): 231-241.
  12. Goulding CJ. 1979. Validation of growth models used in forest management. New Zealand Journal of Forestry 24: 108-124.
  13. Hamzah KA, Mohamed AH. 1994. Volume equations and tables for teak (Tectona grandis Linn) in Mata Ayer, Perlis, Malaysia. FRIM Reports 65: 18-33.
  14. Hoare P, Patanapongsa N. 1988. Long-rotation, high value trees: an alternative strategy for private forestry. Commonwealth Forestry Review 67: 351-61.
  15. Jara MC, Henry M, Rejou-Mechain M, Wayson C, Zapata-Cuartas M, Piotto D, Guier FA, Lombis HC, Lopez EC, Lara RC, Rojas KC, Pasquel JDA, Montoya AD, Vega JF, Galo AJ, Lopez OR, Marklund LG, Fuentes JMM, Milla F, Chaidez J de JN, Malavassi EO, Perez J, Zea CR, Garcia LR, Pons RR, Saint-Andre L, Sanquetta C, Scot, C, Westfal, J. 2014. Guidelines for documenting and reporting tree allometric equations. Ann Forest Sci 72: 763-768.
  16. Mayer DG, Butler DG. 1993. Statistical validation. Ecological Modelling 68: 21-32. https://doi.org/10.1016/0304-3800(93)90105-2
  17. Moret AY, Jerez M, Mora A. 1998. Determinacion de ecuaciones de volumen para plantaciones de teca (Tectona grandis L.) en la Unidad Experimental de la Reserva Forestal Caparo, Estado Barinas - Venezuela. Revista Forestal Venezolana 42(1): 41-50.
  18. Nunifu TK, Murchinson HG. 1999. Provisional yield models of teak (Tectona grandis Linn F.) plantations in northern Ghana. Forest Ecol Manag 120: 171-178. https://doi.org/10.1016/S0378-1127(98)00529-5
  19. Perez CLD, Kanninen M. 2003. Provisional equations for estimating total and merchantable volume for Tectona grandis trees in Costa Rica. Forests, Trees and Livelihoods 13: 345-359. https://doi.org/10.1080/14728028.2003.9752470
  20. Phillips GB. 1995. Growth functions for teak (Tectona grandis Linn. F.) plantations in Sri Lanka. Commonwealth Forestry Review 74: 361-375.
  21. Ramnarine S. 1994. Growth and yield of teak plantations in Trinidad and Tobago. MS Thesis, University of New Brunswick, Canada.
  22. Reynolds MR, Burkhart HE, Daniels RF. 1981. Procedures for statistical validation of stochastic simulation models. Forest Sci 27: 349-364.
  23. Sandrasegaran K. 1969. A general volume table for Tectona grandis Linn f. (teak) grown in North-West Malaya. Malayan Forester 32(2): 187-200.
  24. Singh SP. 1981. Total tree volume table for Tectona grandis (teak). Indian Forester 107(10): 621-623.
  25. Tewari VP. 2007. Total wood volume equations and their validation for Tecomella undulata plantations in hot arid region of India. Indian Forester 133(12): 1648-1658.
  26. Tewari VP, Kumar, VSK. 2003. Volume equations and their validation for irrigated plantations of Eucalyptus camaldulensis in the hot desert of India. J Trop Forest Sci 15(1): 136-146.
  27. Tewari VP, Mariswamy KM, ArunKumar AN. 2013. Total and merchantable volume equations for Tectona grandis Linn F. Plantations in Karnataka, India. J Sustain Forestry 32(3): 213-229. https://doi.org/10.1080/10549811.2013.762187
  28. Tewari VP, Singh B. 2006. Total and merchantable wood volume equations for Eucalyptus hybrid trees in Gujarat State, India. Arid Land Research and Management 20(2): 147-159. https://doi.org/10.1080/15324980500546015
  29. Troup RS. 1921. The silviculture of Indian trees. Vol. II, Clarendon Press, Oxford.
  30. Westfall PH. 2014. Kurtosis as Peakedness, 1905-2014. R.I.P.. The American Statistician 68: 191-5. https://doi.org/10.1080/00031305.2014.917055