DOI QR코드

DOI QR Code

Printable Time Temperature Integrator Consisting of Oxygen Indicator and Cover Film with Various Oxygen Permeability

다양한 산소 투과도를 가진 커버필름과 산소지시물질로 제작된 인쇄형 TTI

  • Kim, Do Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Jang, Han Dong (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Han, Seo Hyeon (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Ahn, Myung Hyun (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Lee, Seung Ju (Center for Intelligent Agro-Food Packaging (CIFP), Department of Food Science and Biotechnology, Dongguk University-Seoul)
  • 김도현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 장한동 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 한서현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 안명현 (동국대학교 식품생명공학과, 지능형포장센터) ;
  • 이승주 (동국대학교 식품생명공학과, 지능형포장센터)
  • Received : 2018.04.18
  • Accepted : 2018.07.13
  • Published : 2018.08.31

Abstract

A printable time temperature integrator (TTI) consisting of oxygen indicator and cover films with various oxygen permeability was developed. The printing ink contained methylene blue (oxygen indicator) which changed in color during storage. $TiO_2$ and glycerol for UV-activation of TTI and zein and ethanol for printing performance were also contained in the printing ink. The cover film on the ink was employed to control the color change rate and temperature dependency (Arrhenius activation energy, $E_a$) by using the different films (PE, PET, OPP, and LLDPE). The film properties were varied by annealing. TTI was produced by silk screen printing. As a result, the color change rates were different for the cover films, being the highest in TTI with LLDPE, followed by OPP, PE, and PET. The rate decreased with increase in the cover film thickness. The $E_a$ was the highest in TTI with LLDPE, followed by OPP, PE, and PET. The $E_a$ did not change with the cover film thickness. The annealed PVC and PET film were lower in oxygen permeability than the unannealed ones, indicating the lower color change rate.

본 연구에서는 산소지시물질을 이용한 새로운 UV-activation 인쇄형 시간-온도 이력지시계(time temperature integrator; TTI)를 개발하였다. $TiO_2$와 glycerol이 UV activation을 위해서 첨가되었으며 glycerol의 경우 비가역적반응을 위해 첨가량을 23 mg으로 조절하였다. 또한 인쇄적성을 위해 zein 함량 0.8 g, 90% ethanol 함량 4.0 g으로 조절하였고 silk screen의 mesh는 250 mesh일 때 최적의 인쇄성상을 나타내었다. 서로 다른 커버필름(PE, PET, OPP, and LLDPE)을 이용하여 색변화속도와 온도의존성을 측정하였다. 각 필름의 $E_a$를 측정한 결과 OPP, PE, LLDPE의 경우 60.07-84.47 kJ/mol의 $E_a$를 나타내어 TTI로서의 적용가능성을 확인할 수 있었다. 반면 PET의 경우 $E_a$가 15.76 kJ/mol으로 적용성이 떨어지는 것으로 판단되었다. 또한 커버필름의 두께의 경우 $E_a$에 영향을 미치지 않는 것으로 나타났으며 annealing한 필름은 고분자 구조의 변화로 인해 산소 투과도가 annealing하지 않은 동종의 필름보다 PET의 경우 29.8%, PVC의 경우 60.7% 감소하는 것으로 나타났다. 본 연구에서 새롭게 개발된 UV-activation 인쇄형 TTI는 다양한 커버필름을 통해 산소 투과도와 $E_a$를 조절할 수 있었고 annealing을 통하여 추가적으로 산소 투과도를 조절할 수 있어 다양한 유효기간을 갖는 식품에 광범위하게 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Taoukis, P. S. 2001. Food process modelling. L. M. M. Tijskens, CRC press, England, pp. 402-432.
  2. Taoukis, P. S., Koutsoumanis, K., and Nychas, G. J. 1999. Use of time temperature integrators and predictive modelling for shelf life. Int. J. Food Microbiol. 53: 21-31. https://doi.org/10.1016/S0168-1605(99)00142-7
  3. Rodriguez, N. and Zaritzky N. E. 1983. Development of time-temperature integrator-indicator for frozen beef. J. Food Sci. 48: 1526-1531. https://doi.org/10.1111/j.1365-2621.1983.tb03530.x
  4. Ellouze, M. and Augustin, J. C. 2010. Applicability of biological time temperature integrators as quality and safety indicators for meat products. Int. J. Food Microbiol. 138: 119-129. https://doi.org/10.1016/j.ijfoodmicro.2009.12.012
  5. Giannakourou, M. C., Koutsoumanis, K., Nychas, G. J., and Taoukis, P. S. 2005. Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. Food Microbiol. 102: 323-336. https://doi.org/10.1016/j.ijfoodmicro.2004.11.037
  6. Shellhammer, T. H. and Singh, R. P. 1991. Monitoring chemical and microbial changes of cottage cheese using a full history time temperature indicator. J. Food Sci. 56: 402-410. https://doi.org/10.1111/j.1365-2621.1991.tb05290.x
  7. Fu, B., Taoukis, P. S., and Labuza, T. P. 1991. Predictive microbiology for monitoring spoilage of dairy products with time-temperature indicators. J. Food Sci. 56: 1209-1215. https://doi.org/10.1111/j.1365-2621.1991.tb04736.x
  8. Giannakourou, M. C. and Taoukis, P. S. 2003. Kinetic modeling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83: 33-41. https://doi.org/10.1016/S0308-8146(03)00033-5
  9. Poças, M. F. F., Delgado, T. F., and Oliveira, F. A. R. 2008. Smart packaging technologies for fruits and vegetables. In Smart packaging technologies. John Wiley and Sons Ltd, West Sussex, England, pp. 151-166.
  10. Yan, S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., and Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control 19: 315-319. https://doi.org/10.1016/j.foodcont.2007.04.012
  11. Bobelyn, E., Hertog, M. L., and Nicolai, B. M. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Tech. 42: 104-114. https://doi.org/10.1016/j.postharvbio.2006.05.011
  12. Kim, W., Park, E. A., and Hong, K. W. 2012. Development of a time-temperature integrator system using Burkholderia cepacia lipase. Food sci. Biotech. 21: 497-502. https://doi.org/10.1007/s10068-012-0063-8
  13. Choi, D. Y., Jung, S.W., Lee, D. S., and Lee, S. J. 2013. Fabrication and characteristics of microbial time temperature indicators from bio-paste using screen printing method. Package Tech. Sci. 27: 303-312.
  14. Chen, J. H. and Zall, R. R. 1987. Packaged milk, cream and cottage cheese can be monitored for freshness using polymer indicator labels. Dairy Food Sanit. 7: 402-404.
  15. Suppakul, P. Kim, D. Y., Yang, J. H., Lee, S. B., and Lee, S. J. 2018. Practical design of a diffusion-type-temperature indicator with intrinsic low temperature dependency. J. Food Eng. 223: 22-31. https://doi.org/10.1016/j.jfoodeng.2017.11.026
  16. Xie, K., Liu, H., and Wang, X. 2009. Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohyd. Polym. 78: 538-542. https://doi.org/10.1016/j.carbpol.2009.05.013
  17. Galagan, Y., Hsu, S. H., and Su, W. F. 2010. Monitoring time and temperature by methylene blue containing polyacrylate film. Sensor. Actuat. B-Chem. 144: 4955.
  18. Galagan, Y. and Su, W. F. 2008. Fadable ink for time-temperature control of food freshness: Novel new time-temperature indicator. Food Res. Int. 41: 653-657. https://doi.org/10.1016/j.foodres.2008.04.012
  19. Magoshi, J. and Nakamura, S. 1975. Studies on physical properties and structure of silk. Glass transition and crystallization of silk fibroin. J. Appl. Polym. Sci. 19: 1013-1015. https://doi.org/10.1002/app.1975.070190410
  20. Price, D. M., Reading, M., Hammiche, A., Pollock, H. M., and Branch, M. G. 1999. Localised thermal analysis of a packaging film. Thermochim. Acta 332: 143-149. https://doi.org/10.1016/S0040-6031(99)00068-4
  21. Park, H. R., Kim, K. H., and Lee, S. J. 2013. Adjustment of Arrehenius activation energy of laccase-based time-temperature integrator (TTI) using sodium azide. Food Control 32: 615-620. https://doi.org/10.1016/j.foodcont.2013.01.046
  22. Taoukis, P. S. and Labuza, T. 1989. Applicability of timetemperature indicators as shelf life monitors of food products. J. Food Sci. 54: 783-788. https://doi.org/10.1111/j.1365-2621.1989.tb07882.x
  23. Yan. S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z., and Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control 19: 315-319. https://doi.org/10.1016/j.foodcont.2007.04.012
  24. Mills, A., Tommons, C., Bailey, R. T., Tedford, M. C., and Crilly, P. J. 2008. UV-activated luminescence/colourmetric $O_2$ indicator. Int. J. Photoenergy. open access article ID 547301, doi:10.1155/2008/547301, p. 6.
  25. Dhawan, S. 2013. Polymeric-based multilayer food packaging films for pressure-assisted and microwave-assisted thermal sterilization. Proquest dissertation publishing, Washington, USA, pp. 68-89.
  26. Dabral, S., Van Etten, J., Zhang, X., Apblett, C., Yang, G. R., Ficalora, P., and McDonald, J. F. 1992. Stress in thermally annealed parylene films. J. Electron. Mater. 21: 989-994. https://doi.org/10.1007/BF02684208
  27. Park, H. J., Shim, S. D., Min, S. G., and Lee, S. J. 2009. Mathematical simulation of the temperature dependence of time temperature integrator (TTI) and meat qualities. Korean J. Food Sci. An. 29: 349-355. https://doi.org/10.5851/kosfa.2009.29.3.349
  28. Fischer, E. W. 1972. Effect of annealing and temperature on the morphological structure of polymers. Pure Appl. Chem. 31: 113-132. https://doi.org/10.1351/pac197231010113
  29. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., and Hristova-Bogaerds, D. G. 2009. Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci. 47: 2247-2258. https://doi.org/10.1002/polb.21822
  30. Kim, J., Kim, M. S., and Kim, B. W. 2011. Study on isothermal crystallization behavior and surface properties of nonoriented PLA film with annealing temperature. Kor. Chem. Eng. Res. 49: 611-616. https://doi.org/10.9713/kcer.2011.49.5.611
  31. Perkins, W. 1988. Effect of molecular weight and annealing temperature on the oxygen barrier properties of oriented PET film. Polym. Bull. 19: 397-401.