DOI QR코드

DOI QR Code

Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association

  • Choi, Sukjung (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University) ;
  • Jin, Gwi-Deuk (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University) ;
  • Park, Jongbin (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University) ;
  • You, Inhwan (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Eun Bae (Laboratory of Microbial Genomics and Big Data, College of Animal Life Sciences, Kangwon National University)
  • Received : 2018.03.21
  • Accepted : 2018.05.25
  • Published : 2018.08.28

Abstract

Lactobacillus plantarum is a lactic acid bacterium that promotes animal intestinal health as a probiotic and is found in a wide variety of habitats. Here, we investigated the genomic features of different clusters of L. plantarum strains via pan-genomic analysis. We compared the genomes of 108 L. plantarum strains that were available from the NCBI GenBank database. These genomes were 2.9-3.7 Mbp in size and 44-45% in G+C content. A total of 8,847 orthologs were collected, and 1,709 genes were identified to be shared as core genes by all the strains analyzed. On the basis of SNPs from the core genes, 108 strains were clustered into five major groups (G1-G5) that are different from previous reports and are not clearly associated with habitats. Analysis of group-specific enriched or depleted genes revealed that G1 and G2 were rich in genes for carbohydrate utilization (${\text\tiny{L}}-arabinose$, ${\text\tiny{L}}-rhamnose$, and fructooligosaccharides) and that G3, G4, and G5 possessed more genes for the restriction-modification system and MazEF toxin-antitoxin. These results indicate that there are critical differences in gene content and survival strategies among genetically clustered L. plantarum strains, regardless of habitats.

Keywords

References

  1. Holzapfel W, Wood BJ. 2012. The Genera of Lactic Acid Bacteria. Springer Science & Business Media, Berlin.
  2. Makarova KS, Koonin EV. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189: 1199-1208. https://doi.org/10.1128/JB.01351-06
  3. De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum - survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  4. Zago M, Fornasari ME, Carminati D, Burns P, Suarez V, Vinderola G, et al. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 28: 1033-1040. https://doi.org/10.1016/j.fm.2011.02.009
  5. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211. https://doi.org/10.1016/j.copbio.2005.02.003
  6. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. 2017. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 9: 111-122. https://doi.org/10.1007/s12602-017-9264-z
  7. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M. 2005. Exploring Lactobacillus plantarum genome diversity by using microarrays. J. Bacteriol. 187: 6119-6127. https://doi.org/10.1128/JB.187.17.6119-6127.2005
  8. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, et al. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12: 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
  9. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al. 2016. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ. Microbiol. 18: 4974-4989. https://doi.org/10.1111/1462-2920.13455
  10. Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. 2012. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 7: e30187. https://doi.org/10.1371/journal.pone.0030187
  11. Kim EB, Marco ML. 2014. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl. Environ. Microbiol. 80: 154-165. https://doi.org/10.1128/AEM.03108-13
  12. Kopit LM, Kim EB, Siezen RJ, Harris LJ, Marco ML. 2014. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl. Environ. Microbiol. 80: 1899-1909. https://doi.org/10.1128/AEM.03859-13
  13. Kim EB, Jin GD, Lee JY, Choi YJ. 2016. Genomic features and niche-adaptation of Enterococcus faecium strains from Korean soybean-fermented foods. PLoS One 11: e0153279. https://doi.org/10.1371/journal.pone.0153279
  14. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  15. Rizk G, Lavenier D. 2010. GASSST: global alignment short sequence search tool. Bioinformatics 26: 2534-2540. https://doi.org/10.1093/bioinformatics/btq485
  16. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  17. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  18. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  19. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  20. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  21. Siliakus MF, van der Oost J, Kengen SW. 2017. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21: 651-670. https://doi.org/10.1007/s00792-017-0939-x
  22. Aizenman E, Engelberg-Kulka H, Glaser G. 1996. An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93: 6059-6063. https://doi.org/10.1073/pnas.93.12.6059
  23. Mittenhuber G. 1999. Occurence of MazEF-like antitoxin/toxin systems in bacteria. J. Mol. Microbiol. Biotechnol. 1: 295-302.
  24. Nystrom T. 1998. To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol. Rev. 21: 283-290. https://doi.org/10.1111/j.1574-6976.1998.tb00354.x
  25. Gormley NA, Watson MA, Halford SE. 2001. Bacterial restriction-modification systems. eLS DOI: 10.1038/npg.els.0001037.
  26. Kobayashi I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29: 3742-3756. https://doi.org/10.1093/nar/29.18.3742
  27. Plumed-Ferrer C, Koistinen KM, Tolonen TL, Lehesranta SJ, Karenlampi SO, Makimattila E, et al. 2008. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl. Environ. Microbiol. 74: 5349-5358. https://doi.org/10.1128/AEM.00324-08

Cited by

  1. Draft Genome Sequence of Lactobacillus plantarum EBKLp545, Isolated from Piglet Feces vol.8, pp.16, 2018, https://doi.org/10.1128/mra.01739-18
  2. Comparative Genomic Analysis of Lactiplantibacillus plantarum Isolated from Different Niches vol.12, pp.2, 2018, https://doi.org/10.3390/genes12020241
  3. Strain diversity of plant‐associated Lactiplantibacillus plantarum vol.14, pp.5, 2021, https://doi.org/10.1111/1751-7915.13871
  4. Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius vol.9, pp.10, 2018, https://doi.org/10.3390/microorganisms9102038
  5. The Carbohydrate Metabolism of Lactiplantibacillus plantarum vol.22, pp.24, 2018, https://doi.org/10.3390/ijms222413452
  6. Comprehensive pan‐genome analysis of Lactiplantibacillus plantarum complete genomes vol.132, pp.1, 2018, https://doi.org/10.1111/jam.15199