DOI QR코드

DOI QR Code

Aqueous Chemistry of Boric Acid

보론산의 용액 화학

  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 이만승 (목포대학교 신소재공학과 희유금속연구소)
  • Received : 2018.05.11
  • Accepted : 2018.06.22
  • Published : 2018.08.31

Abstract

Distribution data of boric acid in water is necessary to develop a hydrometallurgical process for the recovery of boron from primary and secondary resources containing boron. Boric acid exists as $B(OH)_3$ and $B(OH)_4{^-}$ when solution pH is less than 6 and higher than 12, respectively. In the solution pH range of 6-11, condensation reaction between $B(OH)_3$ and $B(OH)_4{^-}$ results in the formation of some polymers. The mole fraction of the boron polymers such as $B_3O_3(OH)_4{^-}$ and $B_4O_5(OH){_4}^{2-}$ is proportional to the concentration of boric acid.

보론을 함유한 광석이나 2차자원으로부터 보론을 효과적으로 회수하기 위한 습식공정을 개발하기 위해서는 수용액에서 보론산의 농도분포 자료가 필요하다. 보론산은 pH 6 이하의 용액에서 $B(OH)_3$로, pH 12 이상의 용액에서는 $B(OH)_4{^-}$로 존재한다. 그러나 pH 6에서 11사이의 범위에서는 $B(OH)_3$$B(OH)_4{^-}$간의 중합체 형성반응이 일어난다. $B_3O_3(OH)_4{^-}$, $B_4O_5(OH){_4}^{2-}$와 같은 중합체의 몰분율은 보론산의 농도에 비례한다.

Keywords

References

  1. Schweitzer, G. K. and Pesterfield, L. L., 2010 : The aqueous chemistry of the elements, pp.151-155, Oxford University Press.
  2. Habashi, F., 1997 : Handbook of extractive metallurgy, pp.1985-2011, Wiley-VCH.
  3. Weres, O., 1995 : Vapor pressure, speciation and chemical activities in highly concentrated sodium borate solutions at 277 and $317^{\circ}C$, Journal of Solution Chemistry, 25(5), pp.409-438.
  4. Ingri, N., 1963 : Equilibrium studies of ployanions 10. On the first equilibrium steps in the acidification of an application of the self-medium method, Acta Chemica Scandinavica, 17(3), pp.573-580. https://doi.org/10.3891/acta.chem.scand.17-0573
  5. Anderson, J. L., Eyring, E. M., and Whittaker, M. P., 1964 : Temperature jump rate studies of polyborate formation in boric acid, The Journal of Physical Chemistry, 68(5), pp.1128-1132. https://doi.org/10.1021/j100787a027
  6. Keeler, J. and Wothers, P., 2014 : Chemical structure and reactivity, pp.604-606, Oxford University Press.
  7. Nalan, K., Marek, B., and Nidal, H., 2015 : Boron separation processes, pp.35-45, Elsevier.
  8. Fortuny, A., Coll, M. T., Kedari, C. S., and Sastre, A. M., 2014 : Effect of phase modifiers on boron removal by solvent extraction using 1,3 diolic compounds, J. Chem. Technol. Biotechnol, 89, pp.858-865. https://doi.org/10.1002/jctb.4322
  9. Tural, B., Tural, S., and Hosgoren, H., 2007 : Investigation of some 1,3-diols for the requirements of solvent extraction of boron:2,2,6-trimethyl-1,3 heptanediol as potential boron extractant, Turk. J. Chem., 31, pp.163-170.
  10. Poslu, K. and Dudeney, A. W. L., 1983 : Solvent extraction of boron with 2-ethyl-1,3-hexanediol and 2-chloro-4-(1,1,3,3,-tetramethylbutyl)-6-methylol-phenol in petroleum ether, kerosene and chloroform solutions, Hydrometallurgy, 10, pp.47-60. https://doi.org/10.1016/0304-386X(83)90076-2
  11. Ayers, P., Dudeny, A. W. L., and Jahraman, F., 1981 : Solvent extraction of boron with 2-ethyl-1,3-hexanediol and 2-chloro-4-(1,1,3,3-tetramethylbutyl)-6-methylol-phenol, J. Inorg. Nucl. Chem., 43, pp.2097-2100.. https://doi.org/10.1016/0022-1902(81)80556-8