DOI QR코드

DOI QR Code

Biotechnological Potential of Rhodococcus Biodegradative Pathways

  • Kim, Dockyu (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Choi, Ki Young (University College, Yonsei University) ;
  • Yoo, Miyoun (Korea Research Institute of Chemical Technology) ;
  • Zylstra, Gerben J. (Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University) ;
  • Kim, Eungbin (Department of Systems Biology, Yonsei University)
  • Received : 2017.12.08
  • Accepted : 2018.05.01
  • Published : 2018.07.28

Abstract

The genus Rhodococcus is a phylogenetically and catabolically diverse group that has been isolated from diverse environments, including polar and alpine regions, for its versatile ability to degrade a wide variety of natural and synthetic organic compounds. Their metabolic capacity and diversity result from their diverse catabolic genes, which are believed to be obtained through frequent recombination events mediated by large catabolic plasmids. Many rhodococci have been used commercially for the biodegradation of environmental pollutants and for the biocatalytic production of high-value chemicals from low-value materials. Recent studies of their physiology, metabolism, and genome have broadened our knowledge regarding the diverse biotechnological applications that exploit their catabolic enzymes and pathways.

Keywords

References

  1. Larkin MJ, Kulakov LA, Allen CC. 2006. Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv. Appl. Microbiol. 59: 1-29.
  2. Hwang CY, Lee I, Cho Y, Lee YM, Baek K, Jung YJ, et al. 2015. Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int. J. Syst. Evol. Microbiol. 65: 465-471. https://doi.org/10.1099/ijs.0.070086-0
  3. Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J, Shapiro N, et al. 2016. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol. Ecol. 92: fiv154. https://doi.org/10.1093/femsec/fiw154
  4. Sinha RK, Krishnan KP, Hatha AA, Rahiman M, Thres yamma DD, Kerkar S. 2017. Divers ity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord. Braz. J. Microbiol. 48: 51-61. https://doi.org/10.1016/j.bjm.2016.09.011
  5. Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35: 162-177. https://doi.org/10.1016/j.envint.2008.07.018
  6. Larkin MJ, Kulakov LA, Allen CC. 2005. Biodegradation and Rhodococcus - masters of catabolic versatility. Curr. Opin. Biotechnol. 16: 282-290. https://doi.org/10.1016/j.copbio.2005.04.007
  7. Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS. 2006. Nitrilase and its application as a 'green' catalyst. Chem. Biodivers. 3: 1279-1287. https://doi.org/10.1002/cbdv.200690131
  8. Kim D, Yoo M, Choi KY, Kang BS, Kim TK, Hong SG, et al. 2011. Differential degradation of bicyclics with aromatic and alicyclic rings by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 77: 8280-8287. https://doi.org/10.1128/AEM.06359-11
  9. Yam KC, Okamoto S, Roberts JN, Eltis LD. 2011. Adventures in Rhodococcus - from steroids to explosives. Can. J. Microbiol. 57: 155-168. https://doi.org/10.1139/W10-115
  10. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, et al. 2013. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 8: 2151-2156. https://doi.org/10.1021/cb400505a
  11. Warren R, Hsiao WW, Kudo H, Myhre M, Dosanjh M, Petrescu A, et al. 2004. Functional characterization of a catabolic plasmid from polychlorinated-biphenyl-degrading Rhodococcus sp. strain RHA1. J. Bacteriol. 186: 7783-7795. https://doi.org/10.1128/JB.186.22.7783-7795.2004
  12. Dabrock B, Kesseler M, Averhoff B, Gottschalk G. 1994. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 60: 853-860. https://doi.org/10.1128/AEM.60.3.853-860.1994
  13. Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD. 2005. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J. Bacteriol. 187: 4050-4063. https://doi.org/10.1128/JB.187.12.4050-4063.2005
  14. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, et al. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 103: 15582-15587. https://doi.org/10.1073/pnas.0607048103
  15. Choi KY, Kim D, Chae JC, Zylstra GJ, Kim E. 2007. Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17. Biochem. Biophys. Res. Commun. 357: 766-771. https://doi.org/10.1016/j.bbrc.2007.04.009
  16. Choi KY, Zylstra GJ, Kim E. 2007. Benzoate catabolite repression of the phthalate degradation pathway in Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 73: 1370-1374. https://doi.org/10.1128/AEM.02379-06
  17. Yoo M, Kim D, Choi KY, Chae JC, Zylstra GJ, Kim E. 2012. Draft genome sequence and comparative analysis of the superb aromatic-hydrocarbon degrader Rhodococcus sp. strain DK17. J. Bacteriol. 194: 4440. https://doi.org/10.1128/JB.00844-12
  18. de Carvalho CC, Cos ta SS, Fernandes P, Couto I, Viveiros M. 2014. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol. 5: 133.
  19. Maruyama T, Ishikura M, Taki H, Shindo K, Kasai H, Haga M, et al. 2005. Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14. Appl. Environ. Microbiol. 71: 7705-7715. https://doi.org/10.1128/AEM.71.12.7705-7715.2005
  20. Kim D, Chae JC, Zylstra GJ, Kim YS, Kim SK, Nam MH, et al. 2004. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 70: 7086-7092. https://doi.org/10.1128/AEM.70.12.7086-7092.2004
  21. Kim D, Chae JC, Zylstra GJ, Sohn HY, Kwon GS, Kim E. 2005. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17. J. Microbiol. 43: 49-53.
  22. Kohyama E, Yoshimura A, Aoshima D, Yoshida T, Kawamoto H, Nagasawa T. 2006. Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl. Microbiol. Biotechnol. 72: 600-606. https://doi.org/10.1007/s00253-005-0298-x
  23. Paisio CE, Quevedo MR, Talano MA, Gonzalez PS, Agostini E. 2014. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation. Environ. Technol. 35: 1802-1810. https://doi.org/10.1080/09593330.2014.882994
  24. Jeong E, Hirai M, Shoda M. 2008. Removal of o-xylene using biofilter inoculated with Rhodococcus sp. BTO62. J. Hazard. Mater. 152: 140-147. https://doi.org/10.1016/j.jhazmat.2007.06.078
  25. Jeong E, Hirai M, Shoda M. 2009. Removal of xylene by a mixed culture of Pseudomonas sp. NBM21 and Rhodococcus sp. BTO62 in biofilter. J. Biosci. Bioeng. 108: 136-141. https://doi.org/10.1016/j.jbiosc.2009.03.024
  26. Rodrigues JL, Kachel CA, Aiello MR, Quensen JF, Maltseva OV, Tsoi TV, et al. 2006. Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl. Environ. Microbiol. 72: 2476-2482. https://doi.org/10.1128/AEM.72.4.2476-2482.2006
  27. Baxter J, Garton NJ, Cummings SP. 2006. The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of topsoil. Folia Microbiol. 51: 591-597. https://doi.org/10.1007/BF02931624
  28. Kim D, Park MJ, Koh SC, So JS, Kim E. 2002. Three separate pathways for the initial oxidation of limonene, biphenyl, and phenol by Rhodococcus sp. strain T104. J. Microbiol. 40: 86-89.
  29. Suttinun O, Muller R, Luepromchai E. 2009. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20: 281-291. https://doi.org/10.1007/s10532-008-9220-4
  30. Suttinun O, Muller R, Luepromchai E. 2010. Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils. Appl. Environ. Microbiol. 76: 4684-4690. https://doi.org/10.1128/AEM.03036-09
  31. Labbe D, Margesin R, Schinner F, Whyte LG, Greer CW. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59: 466-475. https://doi.org/10.1111/j.1574-6941.2006.00250.x
  32. Margesin R. 2007. Alpine microorganisms: useful tools for low-temperature bioremediation. J. Microbiol. 45: 281-285.
  33. Kim D, Yoo M, Kim E, Hong SG. 2015. Anthranilate degradation by a cold-adapted Pseudomonas sp. J. Basic Microbiol. 55: 354-362. https://doi.org/10.1002/jobm.201300079
  34. Margesin R, Moertelmaier C, Mair J. 2013. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int. Biodeterior. Biodegradation 84: 185-191. https://doi.org/10.1016/j.ibiod.2012.05.004
  35. Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, et al. 2018. Biodegradation of phenol by coldadapted bacteria from Antarctic soils. Polar Biol. 41: 553-562. https://doi.org/10.1007/s00300-017-2216-y
  36. de Carvalho CC, da Fonseca MM. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715-726. https://doi.org/10.1007/s00253-005-1932-3
  37. Nolan LC, O'Connor KE. 2008. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol. Lett. 30: 1879-1891. https://doi.org/10.1007/s10529-008-9791-5
  38. Kim D, Yoo M, Choi KY, Kang BS, Kim E. 2013. Characterization and engineering of an o-xylene dioxygenase for biocatalytic applications. Bioresour. Technol. 145: 123-127. https://doi.org/10.1016/j.biortech.2013.03.034
  39. Priefert H, O'Brien XM, Lessard PA, Dexter AF, Choi EE, Tomic S, et al. 2004. Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl. Microbiol. Biotechnol. 65: 168-176. https://doi.org/10.1007/s00253-004-1589-3
  40. Pandi-Perumal SR, Srinivasan V, Poeggeler B, Hardeland R, Cardinali DP. 2007. Drug insight: the use of melatonergic agonists for the treatment of insomnia - focus on ramelteon. Nat. Clin. Pract. Neurol. 3: 221-228. https://doi.org/10.1038/ncpneuro0467
  41. Raj J, Prasad S, Sharma NN, Bhalla TC. 2010. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34. Folia Microbiol. 55: 442-446. https://doi.org/10.1007/s12223-010-0074-x
  42. Kamal A, Kumar MS, Kumar CG, Shaik T. 2011. Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber s train AKSH-84. J. Microbiol. Biotechnol. 21: 37-42. https://doi.org/10.4014/jmb.1006.06044
  43. Sun J, Yu H, Chen J, Luo H, Shen Z. 2016. Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J. Ind. Microbiol. Biotechnol. 43: 1631-1639. https://doi.org/10.1007/s10295-016-1840-9
  44. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110: 3552-3599. https://doi.org/10.1021/cr900354u
  45. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28: 1883-1896. https://doi.org/10.1039/c1np00042j
  46. Gellerstedt G. 2015. Softwood kraft lignin: raw material for the future. Ind. Crops Prod. 77: 845-854. https://doi.org/10.1016/j.indcrop.2015.09.040
  47. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD. 2011. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50: 5096-5107. https://doi.org/10.1021/bi101892z
  48. Rahmanpour R, Bugg TD. 2013. Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J. 280: 2097-2104. https://doi.org/10.1111/febs.12234
  49. Bae HW, K im D, Choi KY, Kwon NR, Chae JC, Zyls tra GJ, et al. 2007. Functional identification of p-cumate operons in the terpene-degrading Rhodococcus sp. strain T104. FEMS Microbiol. Lett. 266: 54-59. https://doi.org/10.1111/j.1574-6968.2006.00497.x
  50. De Carvalho CCCR, Van Keulen F, Da Fonseca MMR. 2000. Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells: an introductory approach to selective hydrolysis and product separation. Food Technol. Biotechnol. 38: 181-185.
  51. van der Werf MJ, Boot AM. 2000. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146: 1129-1141. https://doi.org/10.1099/00221287-146-5-1129
  52. de Carvalho CC, Poretti A, da Fonseca MM. 2005. Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Appl. Microbiol. Biotechnol. 69: 268-275. https://doi.org/10.1007/s00253-005-1967-5
  53. Duetz WA, Fjällman AH, Ren S, Jourdat C, Witholt B. 2001. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl. Environ. Microbiol. 67: 2829-2832. https://doi.org/10.1128/AEM.67.6.2829-2832.2001
  54. Thompson ML, Marriott R, Dowle A, Grogan G. 2010. Biotransformation of ${\beta}$-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants. Appl. Microbiol. Biotechnol. 85: 721-730. https://doi.org/10.1007/s00253-009-2182-6
  55. Garcia JL, Uhia I, Galan B. 2012. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb. Biotechnol. 5: 679-699. https://doi.org/10.1111/j.1751-7915.2012.00331.x
  56. Yang X, Dubnau E, Smith I, Sampson NS. 2007. Rv1106c from Mycobacterium tuberculosis is a $3{\beta}$-hydroxysteroid dehydrogenase. Biochemistry 46: 9058-9067. https://doi.org/10.1021/bi700688x
  57. Van der Geize R, Yam K, Heus er T, Wilbrink MH, Hara H, Anderton MC, et al. 2007. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 104: 1947-1952. https://doi.org/10.1073/pnas.0605728104
  58. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol. 32: 688-705. https://doi.org/10.1016/S0141-0229(03)00029-2
  59. Sojo MM, Bru RR, Garcia-Carmona FF. 2002. Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration. BMC Biotechnol. 2: 3. https://doi.org/10.1186/1472-6750-2-3
  60. Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK. 2009. OxDBase: a database of oxygenases involved in biodegradation. BMC Res. Notes 2: 67. https://doi.org/10.1186/1756-0500-2-67
  61. Carbajosa G, Trigo A, Valencia A, Cases I. 2009. Bionemo: molecular information on biodegradation metabolism. Nucleic Acids Res. 37 (Database issue): D598-D602. https://doi.org/10.1093/nar/gkn864
  62. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, et al. 2012. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40(D1): D742-D753. https://doi.org/10.1093/nar/gkr1014
  63. Ellis L B, Wackett LP. 2012. Use of the University of Minnesota Biocatalysis/biodegradation Database for study of microbial degradation. Microb. Inform. Exp. 2: 1. https://doi.org/10.1186/2042-5783-2-1
  64. Kanehisa M. 2013. Chemical and genomic evolution of enzyme-catalyzed reaction networks. FEBS Lett. 587: 2731-2737. https://doi.org/10.1016/j.febslet.2013.06.026
  65. Fernandez d e Las Heras L, Perera J , Navarro Llorens JM. 2014. Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4. J. Steroid Biochem. Mol. Biol. 139: 33-44. https://doi.org/10.1016/j.jsbmb.2013.10.001
  66. Khairy H, Meinert C, Wübbeler JH, Poehlein A, Daniel R, Voigt B, et al. 2016. Genome and proteome analysis of Rhodococcus erythropolis MI2: elucidation of the 4,4'-dithiodibutyric acid catabolism. PLoS One 11: e0167539. https://doi.org/10.1371/journal.pone.0167539
  67. Arora PK, Bae H. 2014. Integration of bioinformatics to biodegradation. Biol. Proced. Online 16: 8. https://doi.org/10.1186/1480-9222-16-8
  68. Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B. 2008. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutantdegrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32: 736-794. https://doi.org/10.1111/j.1574-6976.2008.00122.x
  69. Romero-Silva MJ, Mendez V, Agullo L, Seeger M. 2013. Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS One 8: e56038. https://doi.org/10.1371/journal.pone.0056038
  70. De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D. 2014. A new alkaliphilic coldactive esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl. Biochem. Biotechnol. 172: 3054-3068. https://doi.org/10.1007/s12010-013-0713-1
  71. Santiago M, Ramirez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408.
  72. Nagasawa T, Mathew CD, Mauger J, Yamada H. 1988. Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 54: 1766-1769. https://doi.org/10.1128/AEM.54.7.1766-1769.1988
  73. Gorlatov SN, Maltseva OV, Shevchenko VI, Golovleva LA. 1989. Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya 58: 802-806. [Microbiology 58: 647-651]
  74. Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K. 1992. Asymmetric hydrolysis of ${\alpha}$-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl. Microbiol. Biotechnol. 37: 184-190.
  75. Chung S Y, M aeda M , Song E, Horikos hi K, Kudo T . 1994. Isolation and characterization of a gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis s train TA421, from a termite ecosystem. Biosci. Biotechnol. Biochem. 58: 2111-2113. https://doi.org/10.1271/bbb.58.2111
  76. Blakey AJ, Colby J, Williams E, O'Reilly C. 1995. Regio- and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol. Lett. 129: 57-62.
  77. Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, et al. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61: 2079-2085.
  78. Hernandez BS, Koh SC, Chial M, Focht DD. 1997. Terpeneutilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8: 153-158. https://doi.org/10.1023/A:1008255218432
  79. Chartrain M, Jackey B, Taylor C, Sandford V, Gbewonyo K, Lister L, et al. 1998. Bioconversion of indene to cis (1S,2R) indandiol and trans (1R,2R) indandiol by Rhodococcus species. J. Ferment. Bioeng. 86: 550-558. https://doi.org/10.1016/S0922-338X(99)80005-1
  80. Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN. 1999. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 22: 249-256.
  81. Kim D, Kim YS, Kim SK, Kim SW, Zylstra GJ, Kim YM, et al. 2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 68: 3270-3278. https://doi.org/10.1128/AEM.68.7.3270-3278.2002
  82. Margesin R, Fonteyne PA, Redl B. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156: 68-75. https://doi.org/10.1016/j.resmic.2004.08.002
  83. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99: 378-382. https://doi.org/10.1263/jbb.99.378
  84. Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, et al. 2006. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ. Microbiol. 8: 334-346. https://doi.org/10.1111/j.1462-2920.2005.00899.x
  85. Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z. 2010. Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour. Technol. 101: 285-291. https://doi.org/10.1016/j.biortech.2009.07.057
  86. Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T. 2014. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar. Pollut. Bull. 86: 402-410. https://doi.org/10.1016/j.marpolbul.2014.06.039

Cited by

  1. A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Bioc vol.10, pp.None, 2018, https://doi.org/10.3389/fmicb.2019.00786
  2. Editorial: Actinobacteria , a Source of Biocatalytic Tools vol.10, pp.None, 2018, https://doi.org/10.3389/fmicb.2019.00800
  3. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus vol.103, pp.3, 2018, https://doi.org/10.1007/s00253-018-9539-7
  4. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194787
  5. Complete Genome Sequence of Rhodococcus erythropolis X5, a Psychrotrophic Hydrocarbon-Degrading Biosurfactant-Producing Bacterium vol.8, pp.48, 2019, https://doi.org/10.1128/mra.01234-19
  6. Effect of inoculum size, inducer and metal ion on lipase production by Rhodococcus strain UCC 0009 vol.211, pp.None, 2020, https://doi.org/10.1051/e3sconf/202021102012
  7. Re‐Investigation of Hydration Potential of Rhodococcus Whole‐Cell Biocatalysts towards Michael Acceptors vol.12, pp.1, 2020, https://doi.org/10.1002/cctc.201901606
  8. Antimicrobial Activity Against Phytopathogens and Inhibitory Activity on Solanine in Potatoes of the Endophytic Bacteria Isolated From Potato Tubers vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.570926
  9. Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily vol.30, pp.6, 2018, https://doi.org/10.4014/jmb.2001.01006
  10. Isolation and Characterization of Rhodococcus sp. Strains Capable of Degrading Benzimidazole Fungicides Benomyl and Carbendazim vol.24, pp.2, 2018, https://doi.org/10.7585/kjps.2020.24.2.163
  11. Exploring the abundance of oleate hydratases in the genus Rhodococcus —discovery of novel enzymes with complementary substrate scope vol.104, pp.13, 2018, https://doi.org/10.1007/s00253-020-10627-7
  12. Molecular Genetic Markers for Identification of Rhodococcus erythropolis and Rhodococcus qingshengii vol.89, pp.4, 2018, https://doi.org/10.1134/s0026261720040116
  13. Practically Valuable Properties of the Surfactant Synthesized by Rhodococcus Genus Actinobacteria vol.82, pp.4, 2020, https://doi.org/10.15407/microbiolj82.04.094
  14. Biotechnology of Rhodococcus for the production of valuable compounds vol.104, pp.20, 2020, https://doi.org/10.1007/s00253-020-10861-z
  15. Bacterial Diversity in the Asphalt Concrete Lining of the Upper Water Reservoir of a Pumped-Storage Scheme vol.12, pp.11, 2018, https://doi.org/10.3390/w12113045
  16. Microbial fatty acid transport proteins and their biotechnological potential vol.118, pp.6, 2018, https://doi.org/10.1002/bit.27735
  17. Microbial Degradation of Rubber: Actinobacteria vol.13, pp.12, 2018, https://doi.org/10.3390/polym13121989
  18. Genetic toolkits for engineering Rhodococcus species with versatile applications vol.49, pp.None, 2018, https://doi.org/10.1016/j.biotechadv.2021.107748
  19. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter vol.28, pp.31, 2018, https://doi.org/10.1007/s11356-021-13708-w
  20. Bioremediation of the Petroleum Contaminated Desert Steppe Soil with Rhodococcus erythropolis KB1 and Its Effect on the Bacterial Communities of the Soils vol.38, pp.10, 2021, https://doi.org/10.1080/01490451.2021.1964111
  21. Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-81386-2