DOI QR코드

DOI QR Code

A Risk Assessment of Vibrio parahaemolyticus for Consumption of Shucked Raw Oyster in Korea

  • Lee, Jong-Kyung (Department of Food & Nutrition, Hanyang Women's University) ;
  • Yoon, Ki-Sun (Department of Food and Nutrition, Kyunghee University) ;
  • Lee, Hyang (The Research Institute of Nursing Science, Seoul National University) ;
  • Kim, Hyun-Jung (Korea Food Research Institute)
  • Received : 2018.02.19
  • Accepted : 2018.07.19
  • Published : 2018.08.30

Abstract

To assess the risk of V. parahaemolyticus infection caused by consumption of raw oysters in Korea, contamination levels during the retail-to-table route of oysters was modeled to predict V. parahaemolyticus growth based on temperature and time. The consumed amount data of the KNHANES and the standard recipe of RDA were applied. A consumption scenario for exposure assessment was developed and combined with a Beta-Poisson dose-response model. The estimated probability of illness from consumption of pathogenic V. parahaemolyticus in raw oysters during three separate months (April, October, and November) was $5.71{\times}10^{-5}$ (within the 5th and 95th percentile ranges of $2.71{\times}10^{-8}$ to $1.03{\times}10^{-4}$). The results of the quantitative microbial-risk assessment indicated that the major factors affecting the probability of illness were the initial contamination level at the retailer, the consumed amount, the prevalence of pathogenic strains [tdh or trh genes], and exposure temperature and time.

본 연구에서 소비-섭취 시나리오와 온도-시간의 장염비브리오 생육모델을 활용하여 국내 생굴의 병원성 장염 비브리오균의 위해평가를 실시하였다. 장염 비브리오균의 오염 수준 및 병원성 인자 데이터를 활용하였으며, 국민건강영양조사와 농촌진흥청의 표준레시피를 활용하여 섭취량을 조사하였고 용량반응관계는 Beta-Poisson모델을 활용하였다. 국내 소비자가 생굴을 섭취할 때 병원성 장염 비브리오균으로 발생하는 위해는 식중독이 주로 발생하는 4월, 10월, 11월에 $5.71{\times}10^{-5}$ (5퍼센타일 $2.71{\times}10^{-8}$, 95퍼센타일 $1.03{\times}10^{-4}$로 추정되었다. 본 연구에서 생굴의 장염비브리오 위해의 영향인자는 소비시점 생굴의 장염비브리오균의 오염수준, 생굴 섭취량, 병원성 인자(tdh or trh 유전자)의 존재 여부, 상온의 노출온도 및 시간으로 나타났으며 위해관리방안을 제시하였다.

Keywords

References

  1. DePaola, A., Hopkins, L.H., Peeler, J.T., Wentz, B., McPhearson, R.: Incidence of Vibrio parahaemolyticus in US coastal waters and oysters. Appl. Environmental Microbiol., 56, 2299-2302 (1990).
  2. Zhang, X.H., Austin, B. Haemolysins in Vibrio species. J. Appl. Microbiol., 98, 1011-1019 (2005). https://doi.org/10.1111/j.1365-2672.2005.02583.x
  3. Sakazaki R. Vibrio. pp. 127-136. In: Food-borne disease, Cliver DO, Riemann HP (eds). Academic Press, London. (2002).
  4. MFDS (Ministry of Food and Drug Safety) (2016) http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=519&menu_grp=MENU_GRP02. Accessed Oct. 25, 2016.
  5. Codex Alimentarius Commission (1999) Principles and guidelines for the conduct of microbiological risk assessment, CAC/GL-30, Geneva.
  6. FDA (2005) Quantitative risk assessment on the public health impact of pathogenic Vibrio parahaemolyticus in raw oysters. http://www.fda.gov/downloads/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/UCM196915.pdf
  7. Lee, J.K., Jung, D.W., Eom, S.Y., Oh, S.W., Kim, Y.J., Kwak, H.S., Kim, Y.H.: Occurrence of Vibrio parahaemolyticus in oysters from Korean retail outlets. Food Control, 19, 990-994 (2008). https://doi.org/10.1016/j.foodcont.2007.10.006
  8. Lee M.A., Lee J.K., Cha S.M. Analysis on the consumer's attitude and purchase behavior of oysters. Korean J. Cookery Sci. 24, 919-930 (2008).
  9. Lamerding, A.M. Fazil, A. Hazard identification and exposure assessment for microbial food safety risk assessment. Int. J. Food Microbiol. 58,147-157 (2000). https://doi.org/10.1016/S0168-1605(00)00269-5
  10. Toyofuku, H. Harmonization of international risk assessment protocol. Mar. Pollut. Bull. 53, 579-590 (2006). https://doi.org/10.1016/j.marpolbul.2006.08.008
  11. Lee H. Microbiological population of Vibrio parahaemolyticus in oysters of wholesale seafood markets. J. Food Hyg. Safety 21, 238-243 (2006).
  12. Yu H,, Oh E.G., Shin S.B., Park Y.S., Lee H.J., Kim J.H., Song K.C. Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from Korean shellfish. Korean J. Fish. Aquat. Sci. 47, 508-515 (2014).
  13. Kim S., An S., Park B., Oh E.G., Song K.C., Kim J.W., Yu H. Virulence factors and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from the oyster Crassostrea gigas. Korean J. Fish. Aquat. Sci. 49, 116-123 (2016).
  14. Bacteriological Analytical Manual http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070830.htm. Accessed Dec. 1, 2016.
  15. Chung Y.T., So B.T., Kim Y.K., O Y.H., Ham H.J., Cha Y.S. et al. Detection and pathogenicity of hemolysin gene in Vibrio parahaemolyticus. The Report of Seoul Metropolitan Government Research Institute of Public Health and Environment 38, 56-61 (2002).
  16. Yoon K.S., Min K.J., Jung Y.J., Kwon K.Y., Lee J.K., Oh S.W. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiol. 25, 635-641 (2008). https://doi.org/10.1016/j.fm.2008.04.007
  17. KMA (Korea Meteorological Administration) (2005) http://www.kma.go.kr/weather/observation/past_cal.jsp?stn=108&yy =2005&mm=4&obs=1&x=24&y=6. Accessed Jul. 26, 2016.
  18. Yoon K.S. Risk Assessment of pathogenic Escherichia coli and development of pathogen modelling program. Korea MFDS reports. (2012).
  19. KCDC (Korea Center for Disease Control and Prevention) The Third Korea national health and Nutrition Examination Survey (KNHANES III) (2005).
  20. RDA (Rural Development Administration) (2010) http://koreanfood.rda.go.kr/inctfd/total_srch_more1.aspx. Accessed Feb. 16, 2010.
  21. FAO/WHO. Risk assessment of Vibrio parahaemolyticus in seafood. Microbiological Risk Assessment Series 16, 1-200 (2011).
  22. Park M.S., Cho J.I., Lee S.H., Bahk G.J. A study on doseresponse models for foodborne disease pathogens. J. Food Hyg. Safety 29, 299-304 (2014). https://doi.org/10.13103/JFHS.2014.29.4.299
  23. FAO/WHO. Hazard identification, exposure assessment and hazard characterization of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood. Geneva, Switzerland, July 23-27, (2001).
  24. Sobrinho, Pde S, Destro, M.T., Franco, B.D., Landgraf, M. A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil. Int. J Food Microbiol. 180, 69-77 (2014). https://doi.org/10.1016/j.ijfoodmicro.2014.04.008
  25. GonzalezEscalona, N., Blackstone, G.M., DePaola, A. Characterization of a Vibio alginolyticus strain, isolated from Alaskan oysters, carrying a hemolysin gene similar to the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus. Appl. Environmental Microbiol. 72, 7925-7929 (2006). https://doi.org/10.1128/AEM.01548-06
  26. Gooch, J.A., DePaola, A., Bowers, J., Marshall, D.I. Growth and survival of Vibrio parahaemolyticus in postharvest American oysters. J. Food Protect. 65, 970-974 (2002). https://doi.org/10.4315/0362-028X-65.6.970
  27. NZFSA. Risk profile: Vibrio parahaemolyticus in seafood. http://www.foodsafety.govt.nz/elibrary/industry/Risk_Profile_ Vibrio-Science_Research.pdf (2003).
  28. Yamamoto, A., Iwahori, J., Vuddhakul, V., Charernjiratragul, W., Vose, D., Osaka, K., Shigematsu, M., Toyofuku, H., Yamamoto, S., Nishibuchi, M., Kasuga, F. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. Int. J. Food Microbiol. 124, 70-78 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.02.021