DOI QR코드

DOI QR Code

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University) ;
  • Hadi, Amin (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Omidvari, Arash (Department of Mechanical Engineering, Shiraz University) ;
  • Rastgoo, Abbas (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2017.11.02
  • Accepted : 2018.06.26
  • Published : 2018.08.25

Abstract

The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Keywords

References

  1. Abdollahi, R. and Boroomand, B. (2013), "Benchmarks in nonlocal elasticity defined by Eringen's integral model", Int. J. Solid. Struct., 50(18), 2758-2771. https://doi.org/10.1016/j.ijsolstr.2013.04.027
  2. Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26.
  3. Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model., 38(24), 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036
  4. Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
  5. Ansari, R., Oskouie, M., Sadeghi, F. and Bazdid-Vahdati, M. (2015), "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E, 74, 318-327. https://doi.org/10.1016/j.physe.2015.07.013
  6. Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Physica E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042
  7. Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Physica E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042
  8. Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
  9. Asemi, S.R., Farajpour, A. and Mohammadi, M. (2014), "Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory", Compos. Struct., 116, 703-712. https://doi.org/10.1016/j.compstruct.2014.05.015
  10. Asghari, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
  11. Babaei, H. and Shahidi, A.R. (2011), "Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method", Arch. Appl. Mech., 81(8), 1051-1062. https://doi.org/10.1007/s00419-010-0469-9
  12. Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004
  13. Barretta, R. and Marotti de Sciarra, F. (2015), "Analogies between nonlocal and local Bernoulli-Euler nanobeams", Arch. Appl. Mech., 85(1), 89-99. https://doi.org/10.1007/s00419-014-0901-7
  14. Barretta, R., Canadija, M. and Marotti de Sciarra, F. (2016), "A higher-order Eringen model for Bernoulli-Euler nanobeams", Arch. Appl. Mech., 86(3), 483-495. https://doi.org/10.1007/s00419-015-1037-0
  15. Barretta, R., Diaco, M., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Stress-driven integral elastic theory for torsion of nano-beams", Mech. Res. Commun., 87, 35-41.
  16. Barzoki, A.A.M., Loghman, A. and Arani, A.G. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497
  17. Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010
  18. Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M. and El Abbas, A.B. (2009), "A theoretical analysis of flexional bending of $Al/Al_2O_3$ S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
  19. Birman, V. (2014), "Mechanics and energy absorption of a functionally graded cylinder subjected to axial loading", Int. J. Eng. Sci., 78, 18-26. https://doi.org/10.1016/j.ijengsci.2014.01.002
  20. Challamel, N., Hache, F., Elishakoff, I. and Wang, C.M. (2016), "Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models", Compos. Struct., 149, 145-156. https://doi.org/10.1016/j.compstruct.2016.04.007
  21. Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T. and Collet, B. (2014), "On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: correction from a discrete-based approach", Arch. Appl. Mech., 84(9), 1275-1292. https://doi.org/10.1007/s00419-014-0862-x
  22. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
  23. Daneshmehr, A., Rajabpoor, A. and pourdavood, M. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017
  24. Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
  25. Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus., 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  26. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus., 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  27. Ebrahimi, F. and Barati, M.R. (2017), "Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory", Eur. Phys. J. Plus., 132(1), 19. https://doi.org/10.1140/epjp/i2017-11320-5
  28. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus., 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
  29. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
  30. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  31. Eringen, A.C. (1972b), "Theory of micromorphic materials with memory", Int. J. Eng. Sci., 10(7), 623-641. https://doi.org/10.1016/0020-7225(72)90089-4
  32. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  33. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media.
  34. Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
  35. Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), 1450038 https://doi.org/10.1142/S1758825114500380
  36. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: A paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
  37. Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends", Mechanika, 85(5), 11-18.
  38. Ghannad, M. and Nejad, M.Z. (2013), "Elastic solution of pressurized clamped-clamped thick cylindrical shells made of functionally graded materials", J. Theor. Appl. Mech., 51(4), 1067-1079.
  39. Ghannad, M., Nejad, M.Z. and Rahimi, G.H. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika, 79(5), 13-20.
  40. Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
  41. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
  42. Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98.
  43. Golmakani, M.E. and Far, M.N.S. (2016) "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Math. Appl., 72(3), 785-805. https://doi.org/10.1016/j.camwa.2016.06.022
  44. Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science & Business Media.
  45. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018a), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
  46. Hadi, A., Nejad, M.Z. Rastgoo, A. and Hosseini, M. (2018b), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/SCS.2018.26.6.663
  47. Hosseini, M., Hadi, A., Malekshahia, A. and shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Comput. Appl. Mech., 49(1), 197-211.
  48. Jabbari, M. and Nejad, M.Z. (2018), "Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads", Aust. J. Mech. Eng., 1-14.
  49. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
  50. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016a), "Effect of thickness profile and FG function on rotating disks under thermal and mechanical loading", J. Mech., 32(1), 35-46. https://doi.org/10.1017/jmech.2015.95
  51. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016b), "Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
  52. Janghorban, M. (2012), "Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment", Arch. Appl. Mech., 82(5), 669-675. https://doi.org/10.1007/s00419-011-0582-4
  53. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeamusing nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
  54. Kahrobaiyan, M., Rahaeifard, M., Tajalli, S. and Ahmadian, M. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
  55. Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4), 1053-1065.
  56. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), 1750086. https://doi.org/10.1142/S1758825117500867
  57. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), 1850008. https://doi.org/10.1142/S1758825118500084
  58. Li, L. and Hu, Y. (2017), "Torsional statics of two-dimensionally functionally graded microtubes", Mech. Adv. Mater. Struct., 1-13.
  59. Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  60. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  61. Lu, C., Chen, W., Xu, R. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solid. Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
  62. Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), 1650054. https://doi.org/10.1142/S175882511650054X
  63. Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A. and Hoorzad, H. (2014), "Polysilicon nano-beam model based on modified couple stress and Eringen‟s nonlocal elasticity theories", Physica E, 63, 223-228. https://doi.org/10.1016/j.physe.2014.05.025
  64. Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
  65. Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
  66. Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  67. Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006
  68. Nejad, M.Z. and Rahimi, G.H. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essay., 4(3), 131-140.
  69. Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
  70. Nejad, M.Z., Abedi, M., Lotfian, M.H. and Ghannad, M. (2016), "Exact and numerical elastic analysis for the FGM thick-walled cylindrical pressure vessels with exponentially-varying properties", Arch. Metall. Mater., 61(3), 1303-1308. https://doi.org/10.1515/amm-2016-0215
  71. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/SEM.2017.63.2.161
  72. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
  73. Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015c), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70
  74. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
  75. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
  76. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017b), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
  77. Nejad, M.Z., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370.
  78. Nejad, M.Z., Rahimi, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26.
  79. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014a), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
  80. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014b), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
  81. Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017a), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9(1), 1750011. https://doi.org/10.1142/S1758825117500119
  82. Ozturk, A. and Gulgec, M. (2011), "Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation", Int. J. Eng. Sci., 49(10), 1047-1061. https://doi.org/10.1016/j.ijengsci.2011.06.001
  83. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045
  84. Petrova, V. and Schmauder, S. (2012), "Mathematical modelling and thermal stress intensity factors evaluation for an interface crack in the presence of a system of cracks in functionally graded/homogeneous biomaterials", Comput. Mater. Sci., 52(1), 171-177. https://doi.org/10.1016/j.commatsci.2011.02.028
  85. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G., Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  86. Radman, A., Huang, X. and Xie, Y.M. (2014), Maximizing stiffness of functionally graded materials with prescribed variation of thermal conductivity", Comput. Mater. Sci., 82, 457-463. https://doi.org/10.1016/j.commatsci.2013.10.024
  87. Reddy, J.N. and Mahaffey, P. (2013), "Generalized beam theories accounting for von Kármán nonlinear strains with application to buckling", J. Coupl. Syst. Multis. Dyn., 1(1), 120-134. https://doi.org/10.1166/jcsmd.2013.1006
  88. Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 109, 240-242. https://doi.org/10.1016/j.ijengsci.2016.09.009
  89. Romano, G. and Barretta, R. (2017a), "Nonlocal elasticity in nanobeams: the stress-driven integral model", Int. J. Eng. Sci., 115, 14-27. https://doi.org/10.1016/j.ijengsci.2017.03.002
  90. Romano, G. and Barretta, R. (2017b), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B-Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008
  91. Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499.
  92. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
  93. Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209
  94. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008
  95. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  96. Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/SEM.2017.63.3.401
  97. Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocalcurved beams", Struct. Eng. Mech., 59(3), 475-502. https://doi.org/10.12989/sem.2016.59.3.475
  98. Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001
  99. Wang, Y.Z., Wang, Y.S. and Ke, L.L. (2016), "Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory", Physica E, 83, 195-200. https://doi.org/10.1016/j.physe.2016.05.020
  100. Xu, X.J., Deng, Z.C., Zhang, K. and Xu, W. (2016), "Observations of the softening phenomena in the nonlocal cantilever beams", Compos. Struct., 145, 43-57. https://doi.org/10.1016/j.compstruct.2016.02.073
  101. Xue, C.X. and Pan, E. (2013), "On the longitudinal wave along a functionally graded magneto-electro-elastic rod", Int. J. Eng. Sci., 62, 48-55. https://doi.org/10.1016/j.ijengsci.2012.08.004
  102. Yan, J.W., Tong, L.H., Li, C., Zhu, Y. and Wang, Z.W. (2015), "Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory", Compos. Struct., 125, 304-313. https://doi.org/10.1016/j.compstruct.2015.02.017
  103. Yu, Y.J., Xue, Z.N., Li, C.L. and Tian, X.G. (2016), "Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity", Compos. Struct., 146, 108-113. https://doi.org/10.1016/j.compstruct.2016.03.014
  104. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Physica E, 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
  105. Zenkour, A. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium", Physica E, 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022
  106. Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016), "Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory", Eng. Anal. Bound. Elem., 70, 31-39. https://doi.org/10.1016/j.enganabound.2016.05.009
  107. Zhu, X. and Li, L. (2017a), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003
  108. Zhu, X. and Li, L. (2017b), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
  109. Zhu, X. and Li, L. (2017c), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci. 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
  110. Zhu, X. and Li, L. (2017d), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
  111. Ziegler, T. and Kraft, T. (2014), "Functionally graded materials with a soft surface for improved indentation resistance: Layout and corresponding design principles", Comput. Mater. Sci., 86, 88-92. https://doi.org/10.1016/j.commatsci.2014.01.032

Cited by

  1. A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2018, https://doi.org/10.1007/s40430-019-1799-3
  2. Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field vol.12, pp.2, 2018, https://doi.org/10.1142/s1758825120500210
  3. Elastic state of functionally graded curved beam on the plane stress state subject to thermal load vol.48, pp.6, 2020, https://doi.org/10.1080/15397734.2019.1660890
  4. Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189