References
- Abdollahi, R. and Boroomand, B. (2013), "Benchmarks in nonlocal elasticity defined by Eringen's integral model", Int. J. Solid. Struct., 50(18), 2758-2771. https://doi.org/10.1016/j.ijsolstr.2013.04.027
- Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26.
- Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model., 38(24), 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036
- Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
- Ansari, R., Oskouie, M., Sadeghi, F. and Bazdid-Vahdati, M. (2015), "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E, 74, 318-327. https://doi.org/10.1016/j.physe.2015.07.013
- Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Physica E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042
- Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Physica E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042
- Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
- Asemi, S.R., Farajpour, A. and Mohammadi, M. (2014), "Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory", Compos. Struct., 116, 703-712. https://doi.org/10.1016/j.compstruct.2014.05.015
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
- Babaei, H. and Shahidi, A.R. (2011), "Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method", Arch. Appl. Mech., 81(8), 1051-1062. https://doi.org/10.1007/s00419-010-0469-9
- Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004
- Barretta, R. and Marotti de Sciarra, F. (2015), "Analogies between nonlocal and local Bernoulli-Euler nanobeams", Arch. Appl. Mech., 85(1), 89-99. https://doi.org/10.1007/s00419-014-0901-7
- Barretta, R., Canadija, M. and Marotti de Sciarra, F. (2016), "A higher-order Eringen model for Bernoulli-Euler nanobeams", Arch. Appl. Mech., 86(3), 483-495. https://doi.org/10.1007/s00419-015-1037-0
- Barretta, R., Diaco, M., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Stress-driven integral elastic theory for torsion of nano-beams", Mech. Res. Commun., 87, 35-41.
- Barzoki, A.A.M., Loghman, A. and Arani, A.G. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497
- Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010
-
Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M. and El Abbas, A.B. (2009), "A theoretical analysis of flexional bending of
$Al/Al_2O_3$ S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001 - Birman, V. (2014), "Mechanics and energy absorption of a functionally graded cylinder subjected to axial loading", Int. J. Eng. Sci., 78, 18-26. https://doi.org/10.1016/j.ijengsci.2014.01.002
- Challamel, N., Hache, F., Elishakoff, I. and Wang, C.M. (2016), "Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models", Compos. Struct., 149, 145-156. https://doi.org/10.1016/j.compstruct.2016.04.007
- Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T. and Collet, B. (2014), "On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: correction from a discrete-based approach", Arch. Appl. Mech., 84(9), 1275-1292. https://doi.org/10.1007/s00419-014-0862-x
- Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
- Daneshmehr, A., Rajabpoor, A. and pourdavood, M. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017
- Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
- Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus., 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus., 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2017), "Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory", Eur. Phys. J. Plus., 132(1), 19. https://doi.org/10.1140/epjp/i2017-11320-5
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2016), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus., 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1972b), "Theory of micromorphic materials with memory", Int. J. Eng. Sci., 10(7), 623-641. https://doi.org/10.1016/0020-7225(72)90089-4
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media.
- Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
- Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), 1450038 https://doi.org/10.1142/S1758825114500380
- Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: A paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
- Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends", Mechanika, 85(5), 11-18.
- Ghannad, M. and Nejad, M.Z. (2013), "Elastic solution of pressurized clamped-clamped thick cylindrical shells made of functionally graded materials", J. Theor. Appl. Mech., 51(4), 1067-1079.
- Ghannad, M., Nejad, M.Z. and Rahimi, G.H. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika, 79(5), 13-20.
- Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
- Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98.
- Golmakani, M.E. and Far, M.N.S. (2016) "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Math. Appl., 72(3), 785-805. https://doi.org/10.1016/j.camwa.2016.06.022
- Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science & Business Media.
- Hadi, A., Nejad, M.Z. and Hosseini, M. (2018a), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
- Hadi, A., Nejad, M.Z. Rastgoo, A. and Hosseini, M. (2018b), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/SCS.2018.26.6.663
- Hosseini, M., Hadi, A., Malekshahia, A. and shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Comput. Appl. Mech., 49(1), 197-211.
- Jabbari, M. and Nejad, M.Z. (2018), "Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads", Aust. J. Mech. Eng., 1-14.
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016a), "Effect of thickness profile and FG function on rotating disks under thermal and mechanical loading", J. Mech., 32(1), 35-46. https://doi.org/10.1017/jmech.2015.95
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016b), "Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
- Janghorban, M. (2012), "Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment", Arch. Appl. Mech., 82(5), 669-675. https://doi.org/10.1007/s00419-011-0582-4
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeamusing nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
- Kahrobaiyan, M., Rahaeifard, M., Tajalli, S. and Ahmadian, M. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
- Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4), 1053-1065.
- Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), 1750086. https://doi.org/10.1142/S1758825117500867
- Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), 1850008. https://doi.org/10.1142/S1758825118500084
- Li, L. and Hu, Y. (2017), "Torsional statics of two-dimensionally functionally graded microtubes", Mech. Adv. Mater. Struct., 1-13.
- Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Lu, C., Chen, W., Xu, R. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solid. Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), 1650054. https://doi.org/10.1142/S175882511650054X
- Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A. and Hoorzad, H. (2014), "Polysilicon nano-beam model based on modified couple stress and Eringen‟s nonlocal elasticity theories", Physica E, 63, 223-228. https://doi.org/10.1016/j.physe.2014.05.025
- Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
- Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
- Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
- Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006
- Nejad, M.Z. and Rahimi, G.H. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essay., 4(3), 131-140.
- Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
- Nejad, M.Z., Abedi, M., Lotfian, M.H. and Ghannad, M. (2016), "Exact and numerical elastic analysis for the FGM thick-walled cylindrical pressure vessels with exponentially-varying properties", Arch. Metall. Mater., 61(3), 1303-1308. https://doi.org/10.1515/amm-2016-0215
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/SEM.2017.63.2.161
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
- Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015c), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017b), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
- Nejad, M.Z., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370.
- Nejad, M.Z., Rahimi, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26.
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014a), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014b), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
- Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017a), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9(1), 1750011. https://doi.org/10.1142/S1758825117500119
- Ozturk, A. and Gulgec, M. (2011), "Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation", Int. J. Eng. Sci., 49(10), 1047-1061. https://doi.org/10.1016/j.ijengsci.2011.06.001
- Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045
- Petrova, V. and Schmauder, S. (2012), "Mathematical modelling and thermal stress intensity factors evaluation for an interface crack in the presence of a system of cracks in functionally graded/homogeneous biomaterials", Comput. Mater. Sci., 52(1), 171-177. https://doi.org/10.1016/j.commatsci.2011.02.028
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G., Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
- Radman, A., Huang, X. and Xie, Y.M. (2014), Maximizing stiffness of functionally graded materials with prescribed variation of thermal conductivity", Comput. Mater. Sci., 82, 457-463. https://doi.org/10.1016/j.commatsci.2013.10.024
- Reddy, J.N. and Mahaffey, P. (2013), "Generalized beam theories accounting for von Kármán nonlinear strains with application to buckling", J. Coupl. Syst. Multis. Dyn., 1(1), 120-134. https://doi.org/10.1166/jcsmd.2013.1006
- Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 109, 240-242. https://doi.org/10.1016/j.ijengsci.2016.09.009
- Romano, G. and Barretta, R. (2017a), "Nonlocal elasticity in nanobeams: the stress-driven integral model", Int. J. Eng. Sci., 115, 14-27. https://doi.org/10.1016/j.ijengsci.2017.03.002
- Romano, G. and Barretta, R. (2017b), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B-Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008
- Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
- Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/SEM.2017.63.3.401
- Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocalcurved beams", Struct. Eng. Mech., 59(3), 475-502. https://doi.org/10.12989/sem.2016.59.3.475
- Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001
- Wang, Y.Z., Wang, Y.S. and Ke, L.L. (2016), "Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory", Physica E, 83, 195-200. https://doi.org/10.1016/j.physe.2016.05.020
- Xu, X.J., Deng, Z.C., Zhang, K. and Xu, W. (2016), "Observations of the softening phenomena in the nonlocal cantilever beams", Compos. Struct., 145, 43-57. https://doi.org/10.1016/j.compstruct.2016.02.073
- Xue, C.X. and Pan, E. (2013), "On the longitudinal wave along a functionally graded magneto-electro-elastic rod", Int. J. Eng. Sci., 62, 48-55. https://doi.org/10.1016/j.ijengsci.2012.08.004
- Yan, J.W., Tong, L.H., Li, C., Zhu, Y. and Wang, Z.W. (2015), "Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory", Compos. Struct., 125, 304-313. https://doi.org/10.1016/j.compstruct.2015.02.017
- Yu, Y.J., Xue, Z.N., Li, C.L. and Tian, X.G. (2016), "Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity", Compos. Struct., 146, 108-113. https://doi.org/10.1016/j.compstruct.2016.03.014
- Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Physica E, 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
- Zenkour, A. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium", Physica E, 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022
- Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016), "Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory", Eng. Anal. Bound. Elem., 70, 31-39. https://doi.org/10.1016/j.enganabound.2016.05.009
- Zhu, X. and Li, L. (2017a), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003
- Zhu, X. and Li, L. (2017b), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Zhu, X. and Li, L. (2017c), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci. 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
- Zhu, X. and Li, L. (2017d), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
- Ziegler, T. and Kraft, T. (2014), "Functionally graded materials with a soft surface for improved indentation resistance: Layout and corresponding design principles", Comput. Mater. Sci., 86, 88-92. https://doi.org/10.1016/j.commatsci.2014.01.032
Cited by
- A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2018, https://doi.org/10.1007/s40430-019-1799-3
- Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field vol.12, pp.2, 2018, https://doi.org/10.1142/s1758825120500210
- Elastic state of functionally graded curved beam on the plane stress state subject to thermal load vol.48, pp.6, 2020, https://doi.org/10.1080/15397734.2019.1660890
- Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189