DOI QR코드

DOI QR Code

Structural Basis for LAR-RPTP-Mediated Synaptogenesis

  • Won, Seoung Youn (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Ho Min (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.05.10
  • Accepted : 2018.06.25
  • Published : 2018.07.31

Abstract

Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.

Keywords

References

  1. Ammendrup-Johnsen, I., Naito, Y., Craig, A.M., and Takahashi, H. (2015). Neurotrophin-3 enhances the synaptic organizing function of TrkC-protein tyrosine phosphatase sigma in rat hippocampal neurons. J. Neurosci. 35, 12425-12431. https://doi.org/10.1523/JNEUROSCI.1330-15.2015
  2. Aricescu, A.R., McKinnell, I.W., Halfter, W., and Stoker, A.W. (2002). Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol. Cell Biol. 22, 1881-1892. https://doi.org/10.1128/MCB.22.6.1881-1892.2002
  3. Aruga, J., and Mikoshiba, K. (2003). Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol. Cell. Neurosci. 24, 117-129. https://doi.org/10.1016/S1044-7431(03)00129-5
  4. Aruga, J., Yokota, N., and Mikoshiba, K. (2003). Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene 315, 87-94. https://doi.org/10.1016/S0378-1119(03)00715-7
  5. Banfield, M.J., Naylor, R.L., Robertson, A.G., Allen, S.J., Dawbarn, D., and Brady, R.L. (2001). Specificity in Trk receptor:neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9, 1191-1199. https://doi.org/10.1016/S0969-2126(01)00681-5
  6. Barbacid, M. (1994). The Trk family of neurotrophin receptors. J. Neurobiol. 25, 1386-1403. https://doi.org/10.1002/neu.480251107
  7. Carrie, A., Jun, L., Bienvenu, T., Vinet, M.C., McDonell, N., Couvert, P., Zemni, R., Cardona, A., Van Buggenhout, G., Frints, S., et al. (1999). A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23, 25-31.
  8. Choi, Y., Nam, J., Whitcomb, D.J., Song, Y.S., Kim, D., Jeon, S., Um, J.W., Lee, S.G., Woo, J., Kwon, S.K., et al. (2016). SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci. Rep. 6, 26676. https://doi.org/10.1038/srep26676
  9. Coles, C.H., Jones, E.Y., and Aricescu, A.R. (2015). Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin. Cell Dev. Biol. 37, 98-107. https://doi.org/10.1016/j.semcdb.2014.09.007
  10. Coles, C.H., Mitakidis, N., Zhang, P., Elegheert, J., Lu, W., Stoker, A.W., Nakagawa, T., Craig, A.M., Jones, E.Y., and Aricescu, A.R. (2014). Structural basis for extracellular cis and trans RPTPsigma signal competition in synaptogenesis. Nat. Commun. 5, 5209. https://doi.org/10.1038/ncomms6209
  11. Coles, C.H., Shen, Y., Tenney, A.P., Siebold, C., Sutton, G.C., Lu, W., Gallagher, J.T., Jones, E.Y., Flanagan, J.G., and Aricescu, A.R. (2011). Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science 332, 484-488. https://doi.org/10.1126/science.1200840
  12. Dean, C., Scholl, F.G., Choih, J., DeMaria, S., Berger, J., Isacoff, E., and Scheiffele, P. (2003). Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708-716. https://doi.org/10.1038/nn1074
  13. Fogel, A.I., Stagi, M., Perez de Arce, K., and Biederer, T. (2011). Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. EMBO J. 30, 4728-4738. https://doi.org/10.1038/emboj.2011.336
  14. Friedman, W.J. (2001). Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp. Neurol. 168, 23-31. https://doi.org/10.1006/exnr.2000.7595
  15. Goto-Ito, S., Yamagata, A., Sato, Y., Uemura, T., Shiroshima, T., Maeda, A., Imai, A., Mori, H., Yoshida, T., and Fukai, S. (2018). Structural basis of trans-synaptic interactions between PTPdelta and SALMs for inducing synapse formation. Nat. Commun. 9, 269. https://doi.org/10.1038/s41467-017-02417-z
  16. Han, K.A., Jeon, S., Um, J.W., and Ko, J. (2016a). Emergent synapse organizers: LAR-RPTPs and their companions. Int. Rev. Cell Mol. Biol. 324, 39-65.
  17. Han, K.A., Woo, D., Kim, S., Choii, G., Jeon, S., Won, S.Y., Kim, H.M., Heo, W.D., Um, J.W., and Ko, J. (2016b). Neurotrophin-3 Regulates Synapse Development by Modulating TrkC-PTPsigma Synaptic Adhesion and Intracellular Signaling Pathways. J Neurosci 36, 4816-4831. https://doi.org/10.1523/JNEUROSCI.4024-15.2016
  18. Harrison, O.J., Jin, X., Hong, S., Bahna, F., Ahlsen, G., Brasch, J., Wu, Y., Vendome, J., Felsovalyi, K., Hampton, C.M., et al. (2011). The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19, 244-256. https://doi.org/10.1016/j.str.2010.11.016
  19. Himanen, J.P., Yermekbayeva, L., Janes, P.W., Walker, J.R., Xu, K., Atapattu, L., Rajashankar, K.R., Mensinga, A., Lackmann, M., Nikolov, D.B., et al. (2010). Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. USA 107, 10860-10865. https://doi.org/10.1073/pnas.1004148107
  20. Kang, H., Han, K.A., Won, S.Y., Kim, H.M., Lee, Y.H., Ko, J., and Um, J.W. (2016). Slitrk missense mutations associated with neuropsychiatric disorders distinctively impair slitrk trafficking and synapse formation. Front. Mol. Neurosci. 9, 104.
  21. Ko, J. (2012). The leucine-rich repeat superfamily of synaptic adhesion molecules: LRRTMs and Slitrks. Mol. Cells 34, 335-340. https://doi.org/10.1007/s10059-012-0113-3
  22. Ko, J.S., Pramanik, G., Um, J.W., Shim, J.S., Lee, D., Kim, K.H., Chung, G.Y., Condomitti, G., Kim, H.M., Kim, H., et al. (2015). PTPsigma functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission. Proc. Natl. Acad. Sci. USA 112, 1874-1879. https://doi.org/10.1073/pnas.1410138112
  23. Li, Y., Zhang, P., Choi, T.Y., Park, S.K., Park, H., Lee, E.J., Lee, D., Roh, J.D., Mah, W., Kim, R., et al. (2015). Splicing-dependent trans-synaptic SALM3-LAR-RPTP interactions regulate excitatory synapse development and locomotion. Cell Rep. 12, 1618-1630. https://doi.org/10.1016/j.celrep.2015.08.002
  24. Lie, E., Li, Y., Kim, R., and Kim, E. (2018). SALM/Lrfn family synaptic adhesion molecules. Front Mol. Neurosci. 11, 105. https://doi.org/10.3389/fnmol.2018.00105
  25. Lin, Z., Liu, J., Ding, H., Xu, F., and Liu, H. (2018). Structural basis of SALM5-induced PTPdelta dimerization for synaptic differentiation. Nat. Commun. 9, 268. https://doi.org/10.1038/s41467-017-02414-2
  26. Mah, W., Ko, J., Nam, J., Han, K., Chung, W.S., and Kim, E. (2010). Selected SALM (synaptic adhesion-like molecule) family proteins regulate synapse formation. J. Neurosci. 30, 5559-5568. https://doi.org/10.1523/JNEUROSCI.4839-09.2010
  27. Nam, H.J., Poy, F., Krueger, N.X., Saito, H., and Frederick, C.A. (1999). Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449-457. https://doi.org/10.1016/S0092-8674(00)80755-2
  28. Park, B.S., Song, D.H., Kim, H.M., Choi, B.S., Lee, H., and Lee, J.O. (2009). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-U1130. https://doi.org/10.1038/nature07830
  29. Piton, A., Michaud, J.L., Peng, H., Aradhya, S., Gauthier, J., Mottron, L., Champagne, N., Lafreniere, R.G., Hamdan, F.F., team, S.D., et al. (2008). Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum. Mol. Genet. 17, 3965-3974. https://doi.org/10.1093/hmg/ddn300
  30. Pulido, R., Serra-Pages, C., Tang, M., and Streuli, M. (1995). The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc. Natl. Acad. Sci. USA 92, 11686-11690. https://doi.org/10.1073/pnas.92.25.11686
  31. Seiradake, E., Harlos, K., Sutton, G., Aricescu, A.R., and Jones, E.Y. (2010). An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17, 398-402. https://doi.org/10.1038/nsmb.1782
  32. Shaftel, S.S., Griffin, W.S., and O'Banion, M.K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation 5, 7. https://doi.org/10.1186/1742-2094-5-7
  33. Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J., and Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592-596. https://doi.org/10.1126/science.1178310
  34. Sims, J.E., and Smith, D.E. (2010). The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89-102. https://doi.org/10.1038/nri2691
  35. Takahashi, H., and Craig, A.M. (2013). Protein tyrosine phosphatases PTPdelta, PTPsigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36, 522-534. https://doi.org/10.1016/j.tins.2013.06.002
  36. Takahashi, H., Arstikaitis, P., Prasad, T., Bartlett, T.E., Wang, Y.T., Murphy, T.H., and Craig, A.M. (2011). Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69, 287-303. https://doi.org/10.1016/j.neuron.2010.12.024
  37. Takahashi, H., Katayama, K., Sohya, K., Miyamoto, H., Prasad, T., Matsumoto, Y., Ota, M., Yasuda, H., Tsumoto, T., Aruga, J., et al. (2012). Selective control of inhibitory synapse development by Slitrk3-PTPdelta trans-synaptic interaction. Nat. Neurosci. 15, 389-398, S381-382. https://doi.org/10.1038/nn.3040
  38. Tanaka, H., Miyazaki, N., Matoba, K., Nogi, T., Iwasaki, K., and Takagi, J. (2012). Higher-order architecture of cell adhesion mediated by polymorphic synaptic adhesion molecules neurexin and neuroligin. Cell Rep. 2, 101-110. https://doi.org/10.1016/j.celrep.2012.06.009
  39. Thomas, C., Bazan, J.F., and Garcia, K.C. (2012). Structure of the activating IL-1 receptor signaling complex. Nat. Struct. Mol. Biol. 19, 455-457. https://doi.org/10.1038/nsmb.2260
  40. Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833-846.
  41. Um, J.W., Kim, K.H., Park, B.S., Choi, Y., Kim, D., Kim, C.Y., Kim, S.J., Kim, M., Ko, J.S., Lee, S.G., et al. (2014). Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion. Nat. Commun. 5, 5423. https://doi.org/10.1038/ncomms6423
  42. Um, J.W., and Ko, J. (2013). LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol. 23, 465-475. https://doi.org/10.1016/j.tcb.2013.07.004
  43. Valnegri, P., Montrasio, C., Brambilla, D., Ko, J., Passafaro, M., and Sala, C. (2011). The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPdelta and RhoGAP2. Hum. Mol. Genet. 20, 4797-4809. https://doi.org/10.1093/hmg/ddr418
  44. Wallace, M.J., Fladd, C., Batt, J., and Rotin, D. (1998). The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol. Cell Biol. 18, 2608-2616. https://doi.org/10.1128/MCB.18.5.2608
  45. Wang, D., Zhang, S., Li, L., Liu, X., Mei, K., and Wang, X. (2010). Structural insights into the assembly and activation of IL-1beta with its receptors. Nat. Immunol. 11, 905-911. https://doi.org/10.1038/ni.1925
  46. Wiesmann, C., Ultsch, M.H., Bass, S.H., and de Vos, A.M. (1999). Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401, 184-188. https://doi.org/10.1038/43705
  47. Won, S.Y., Kim, C.Y., Kim, D., Ko, J., Um, J.W., Lee, S.B., Buck, M., Kim, E., Heo, W.D., Lee, J.O., et al. (2017). LAR-RPTP clustering is modulated by competitive binding between synaptic adhesion partners and heparan sulfate. Front. Mol. Neurosci. 10, 327. https://doi.org/10.3389/fnmol.2017.00327
  48. Woo, J., Kwon, S.K., Choi, S., Kim, S., Lee, J.R., Dunah, A.W., Sheng, M., and Kim, E. (2009). Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat. Neurosci. 12, 428-437. https://doi.org/10.1038/nn.2279
  49. Xu, Y., and Fisher, G.J. (2012). Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal 6, 125-138. https://doi.org/10.1007/s12079-012-0171-5
  50. Yamagata, A., Sato, Y., Goto-Ito, S., Uemura, T., Maeda, A., Shiroshima, T., Yoshida, T., and Fukai, S. (2015a). Structure of Slitrk2-PTPdelta complex reveals mechanisms for splicing-dependent transsynaptic adhesion. Sci. Rep. 5, 9686. https://doi.org/10.1038/srep09686
  51. Yamagata, A., Yoshida, T., Sato, Y., Goto-Ito, S., Uemura, T., Maeda, A., Shiroshima, T., Iwasawa-Okamoto, S., Mori, H., Mishina, M., et al. (2015b). Mechanisms of splicing-dependent trans-synaptic adhesion by PTPdelta-IL1RAPL1/IL-1RAcP for synaptic differentiation. Nat. Commun. 6, 6926. https://doi.org/10.1038/ncomms7926
  52. Yim, Y.S., Kwon, Y., Nam, J., Yoon, H.I., Lee, K., Kim, D.G., Kim, E., Kim, C.H., and Ko, J. (2013). Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 110, 4057-4062. https://doi.org/10.1073/pnas.1209881110
  53. Yoshida, T., Yasumura, M., Uemura, T., Lee, S.J., Ra, M., Taguchi, R., Iwakura, Y., and Mishina, M. (2011). IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase delta. J. Neurosci. 31, 13485-13499. https://doi.org/10.1523/JNEUROSCI.2136-11.2011
  54. Yoshida, T., Shiroshima, T., Lee, S.J., Yasumura, M., Uemura, T., Chen, X., Iwakura, Y., and Mishina, M. (2012). Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 32, 2588-2600. https://doi.org/10.1523/JNEUROSCI.4637-11.2012

Cited by

  1. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses vol.9, pp.None, 2018, https://doi.org/10.7554/elife.53406
  2. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.659951
  3. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair vol.22, pp.11, 2018, https://doi.org/10.3390/ijms22115583