References
- Amin, A.S., Tan, H.L., and Wilde, A.A. (2010). Cardiac ion channels in health and disease. Heart Rhythm. 7, 117-126. https://doi.org/10.1016/j.hrthm.2009.08.005
- Camci-Unal, G., Annabi, N., Dokmeci, M.R., Liao, R., and Khademhosseini, A. (2014). Hydrogels for cardiac tissue engineering. NPG Asia Mater 6, e99. https://doi.org/10.1038/am.2014.19
- Chattergoon, N.N., Giraud, G.D., Louey, S., Stork, P., Fowden, A.L., and Thornburg, K.L. (2012). Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26, 397-408. https://doi.org/10.1096/fj.10-179895
- Davis, R.P., Casini, S., van den Berg, C.W., Hoekstra, M., Remme, C.A., Dambrot, C., Salvatori, D., Oostwaard, D.W., Wilde, A.A., Bezzina, C.R., et al. (2012). Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079-3091. https://doi.org/10.1161/CIRCULATIONAHA.111.066092
- DeForest, C.A., and Anseth, K.S. (2012). Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421-444. https://doi.org/10.1146/annurev-chembioeng-062011-080945
- Feric, N.T., and Radisic, M. (2016). Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110-134. https://doi.org/10.1016/j.addr.2015.04.019
- Gao, L., Gregorich, Z.R., Zhu, W., Mattapally, S., Oduk, Y., Lou, X., Kannappan, R., Borovjagin, A.V., Walcott, G.P., Pollard, A.E., et al. (2018). Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712-1730. https://doi.org/10.1161/CIRCULATIONAHA.117.030785
- Gherghiceanu, M., Barad, L., Novak, A., Reiter, I., Itskovitz-Eldor, J., Binah, O., and Popescu, L.M. (2011). Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J. Cell. Mol. Med 15, 2539-2551. https://doi.org/10.1111/j.1582-4934.2011.01417.x
- Hazeltine, L.B., Simmons, C.S., Salick, M.R., Lian, X., Badur, M.G., Han, W., Delgado, S.M., Wakatsuki, T., Crone, W.C., Pruitt, B.L., et al. (2012). Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int. J. Cell Biol. 2012, 508294.
- Hirt, M.N., Hansen, A., and Eschenhagen, T. (2014). Cardiac Tissue Engineering. Circ. Res. 114, 354. https://doi.org/10.1161/CIRCRESAHA.114.300522
- Jacot, J.G., McCulloch, A.D., and Omens, J.H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479-3487. https://doi.org/10.1529/biophysj.107.124545
- Kamakura, T., Makiyama, T., Sasaki, K., Yoshida, Y., Wuriyanghai, Y., Chen, J., Hattori, T., Ohno, S., Kita, T., Horie, M., et al. (2013). Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307-1314. https://doi.org/10.1253/circj.CJ-12-0987
- Kim, H.D., Kim, D.J., Lee, I.J., Rah, B.J., Sawa, Y., and Schaper, J. (1992). Human fetal heart development after mid-term: morphometry and ultrastructural study. J. Mol. Cell Cardiol. 24, 949-965. https://doi.org/10.1016/0022-2828(92)91862-Y
- Kim, C., Majdi, M., Xia, P., Wei, K.A., Talantova, M., Spiering, S., Nelson, B., Mercola, M., Chen, H.S. (2010). Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19, 783-795. https://doi.org/10.1089/scd.2009.0349
- Kohl, P., and Ravens, U. (2003). Cardiac mechano-electric feedback: past, present, and prospect. Prog. Biophys. Mol. Biol. 82, 3-9. https://doi.org/10.1016/S0079-6107(03)00022-1
- Kruger, M., Sachse, C., Zimmermann, W.H., Eschenhagen, T., Klede, S., and Linke, W.A. (2008). Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway. Circ. Res. 102, 439. https://doi.org/10.1161/CIRCRESAHA.107.162719
- Laflamme, M.A., and Murry, C.E. (2011). Heart regeneration. Nature 473, 326-335. https://doi.org/10.1038/nature10147
- Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015-1024. https://doi.org/10.1038/nbt1327
- Lee, P., Klos, M., Bollensdorff, C., Hou, L., Ewart, P., Kamp, T.J., Zhang, J., Bizy, A., Guerrero-Serna, G., Kohl, P., et al. (2012). Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ. Res. 110, 1556-1563. https://doi.org/10.1161/CIRCRESAHA.111.262535
-
Lieu, D.K., Liu, J., Siu, C.W., McNerney, G.P., Tse, H.F., Abu-Khalil, A., Huser, T., and Li, R.A. (2009). Absence of transverse tubules contributes to non-uniform
$Ca^{2+}$ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev. 18, 1493-1500. https://doi.org/10.1089/scd.2009.0052 - Liu, J., Laksman, Z., and Backx, P.H. (2016). The electrophysiological development of cardiomyocytes. Adv. Drug Deliv. Rev. 96, 253-273. https://doi.org/10.1016/j.addr.2015.12.023
- Lundy, S.D., Zhu, W.Z., Regnier, M., and Laflamme, M.A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991-2002. https://doi.org/10.1089/scd.2012.0490
- Ma, J., Guo, L., Fiene, S.J., Anson, B.D., Thomson, J.A., Kamp, T.J., Kolaja, K.L., Swanson, B.J., and January, C.T. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006-2017. https://doi.org/10.1152/ajpheart.00694.2011
- Martherus, R.S., Vanherle, S.J., Timmer, E.D., Zeijlemaker, V.A., Broers, J.L., Smeets, H.J., Geraedts, J.P., and Ayoubi, T.A. (2010). Electrical signals affect the cardiomyocyte transcriptome independently of contraction. Physiol Genomics 42A, 283-289. https://doi.org/10.1152/physiolgenomics.00182.2009
- Mihic, A., Li, J., Miyagi, Y., Gagliardi, M., Li, S.H., Zu, J., Weisel, R.D., Keller, G., and Li, R.K. (2014). The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cellderived cardiomyocytes. Biomaterials 35, 2798-2808. https://doi.org/10.1016/j.biomaterials.2013.12.052
- Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L.T., Park, S.Y., Silberstein, L.E., Dos Remedios, C.G., Graham, D., Colan, S., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 110, 1446-1451. https://doi.org/10.1073/pnas.1214608110
- Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., Das, S.R., de Ferranti, S., Despres, J.P., Fullerton, H.J., et al. (2016). Heart disease and stroke statistics-2016 update. A Report From the American Heart Association 133, e38-e360.
- Nunes, S.S., Miklas, J.W., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., Jiang, J., Masse, S., Gagliardi, M., Hsieh, A., et al. (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781-787. https://doi.org/10.1038/nmeth.2524
- Oakley, R.H., and Cidlowski, J.A. (2015). Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J. Steroid. Biochem. Mol. Biol. 153, 27-34. https://doi.org/10.1016/j.jsbmb.2015.03.009
- Parikh, S.S., Blackwell, D.J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C.P., Fiane, A., Tonnessen, T., Kryshtal, D.O., et al. (2017). Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323-1330. https://doi.org/10.1161/CIRCRESAHA.117.311920
- Pasumarthi, K.B., and Field, L.J. (2002). Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044-1054. https://doi.org/10.1161/01.RES.0000020201.44772.67
- Pedron, S., van Lierop, S., Horstman, P., Penterman, R., Broer, D.J., and Peeters, E. (2011). Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv. Funct. Mater. 21, 1624-1630. https://doi.org/10.1002/adfm.201002708
- Peters, N.S., Green, C.R., Poole-Wilson, P.A., and Severs, N.J. (1993). Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88, 864-875. https://doi.org/10.1161/01.CIR.88.3.864
- Peters, N.S., Severs, N.J., Rothery, S.M., Lincoln, C., Yacoub, M.H., and Green, C.R. (1994). Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90, 713. https://doi.org/10.1161/01.CIR.90.2.713
- Prakash, Y.S., Cody, M.J., Housmans P.R., Hannon J.D., and Sieck, G.C. (1999). Comparison of cross-bridge cycling kinetics in neonatal vs. adult rat ventricular muscle. J. Muscle Res. Cell Motil 20, 717-723. https://doi.org/10.1023/A:1005585807179
- Robertson, C., Tran, D.D., and George, S.C. (2013). Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829-837. https://doi.org/10.1002/stem.1331
-
Rog-Zielinska, E.A., Craig, M.A,. Manning, J.R., Richardson, R.V., Gowans, G.J., Dunbar, D.R., Gharbi, K., Kenyon, C.J., Holmes, M.C., Hardie, D.G., et al. (2015). Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-
$1{\alpha}$ . Cell Death Differ. 22, 1106-1116. https://doi.org/10.1038/cdd.2014.181 - Ruan, J.L., Tulloch, N.L., Razumova, M.V., Saiget, M., Muskheli, V., Pabon, L., Reinecke, H., Regnier, M., and Murry, C.E. (2016). Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557-1567. https://doi.org/10.1161/CIRCULATIONAHA.114.014998
- Sankova, B., Benes, J. Jr., Krejci, E., Dupays, L., Theveniau-Ruissy, M., Miquerol, L., and Sedmera, D. (2012). The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc Res. 95, 469-479. https://doi.org/10.1093/cvr/cvs210
- Sartiani, L., Bettiol, E., Stillitano, F., Mugelli, A., Cerbai, E., and Jaconi, M.E. (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25, 1136-1144. https://doi.org/10.1634/stemcells.2006-0466
- Scuderi, G.J. and Butcher, J. (2017). Naturally engineered maturation of cardiomyocytes. Front. Cell Dev. Biol. 5, 50. https://doi.org/10.3389/fcell.2017.00050
- Shadrin, I.Y., Allen, B.W., Qian, Y., Jackman, C.P., Carlson, A.L., Juhas, M.E., and Bursac, N. (2017). Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825. https://doi.org/10.1038/s41467-017-01946-x
- Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., Palpant, N.J., Gantz, J., Moyes, K.W., Reinecke, H., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322-325. https://doi.org/10.1038/nature11317
- Shigeru, M., Fukushima, S., Imanishi, Y., Kawamura, T., Mochizuki-Oda, N., Masuda, S., and Sawa, Y. (2016). Building a new treatment for heart failure-transplantation of induced pluripotent stem cellderived cells into the heart. Curr. Gene Ther. 16, 5-13. https://doi.org/10.2174/1566523216666160119094143
- Shimko, V.F., and Claycomb, W.C. (2008). Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng. Part A 14, 49-58.
- Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355-H2363. https://doi.org/10.1152/ajpheart.00020.2003
- Taber, L.A. (2001). Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3, 1-25. https://doi.org/10.1146/annurev.bioeng.3.1.1
- Takahashi, K., Kakimoto,Y., Toda, K., and Naruse, K. (2013). Mechanobiology in cardiac physiology and diseases. J. Cell Mol. Med. 17, 225-232. https://doi.org/10.1111/jcmm.12027
- Tulloch, N. L., Muskheli, V., Razumova, M.V., Korte, F.S., Regnier, M., Hauch, K.D., Pabon, L., Reinecke, H., and Murry, C.E. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47-59. https://doi.org/10.1161/CIRCRESAHA.110.237206
- Vanwinkle, W.B., Snuggs, M.B., and Buja, L.M. (1996). Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell. Dev. Biol. Anim. 32, 478-485. https://doi.org/10.1007/BF02723051
- Veerman, C.C., Kosmidis, G., Mummery, C.L., Casini, S., Verkerk, A.O., and Bellin, M. (2015). Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev. 24, 1035-1052. https://doi.org/10.1089/scd.2014.0533
- Vreeker, A., van Stuijvenberg, L., Hund, T.J., Mohler, P.J., Nikkels, P.G., and van Veen, T.A.. (2014). Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 9, e94722. https://doi.org/10.1371/journal.pone.0094722
- Wang, Y., Xu, H., Kumar, R., Tipparaju, S.M., Wagner, M.B., and Joyner, R.W. (2003). Differences in transient outward current properties between neonatal and adult human atrial myocytes. J. Mol. Cell Cardiol. 35, 1083-1092. https://doi.org/10.1016/S0022-2828(03)00200-1
- Yang, X., Pabon, L., and Murry, C.E. (2014a). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511-523. https://doi.org/10.1161/CIRCRESAHA.114.300558
- Yang, X., Rodriguez, M., Pabon, L., Fischer, K.A., Reinecke, H., Regnier, M., Sniadecki, N.J., Ruohola-Baker, H., and Murry, C.E. (2014b). Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell Cardiol. 72, 296-304. https://doi.org/10.1016/j.yjmcc.2014.04.005
- You, J.O., Rafat, M., Ye, G.J.C., and Auguste, D.T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 11, 3643-3648. https://doi.org/10.1021/nl201514a
- Zhang, J., Klos, M., Wilson, G.F., Herman, A.M., Lian, X., Raval, K.K., Barron, M.R., Hou, L., Soerens, A.G., Yu, J., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ. Res. 111, 1125-1136. https://doi.org/10.1161/CIRCRESAHA.112.273144
- Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30-41.
- Ziman, A.P., Gomez-Viquez, N.L., Bloch, R.J., and Lederer, W.J. (2010). Excitation-contraction coupling changes during postnatal cardiac development. J. Mol. Cell Cardiol. 48, 379-386. https://doi.org/10.1016/j.yjmcc.2009.09.016
- Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223-230. https://doi.org/10.1161/hh0202.103644
Cited by
- Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-49653-5
- The giant titin: how to evaluate its role in cardiomyopathies vol.40, pp.2, 2018, https://doi.org/10.1007/s10974-019-09518-w
- Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy vol.116, pp.36, 2018, https://doi.org/10.1073/pnas.1910962116
- Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies vol.20, pp.18, 2019, https://doi.org/10.3390/ijms20184381
- Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines vol.189, pp.2, 2019, https://doi.org/10.1007/s12010-019-03012-2
- Modeling and simulation of human induced pluripotent stem cell‐derived cardiac tissue vol.42, pp.4, 2018, https://doi.org/10.1002/gamm.201900002
- A Proteomic Perspective on Cardiomyocyte Maturation vol.125, pp.11, 2018, https://doi.org/10.1161/circresaha.119.316039
- Maturing iPSC-Derived Cardiomyocytes vol.9, pp.1, 2018, https://doi.org/10.3390/cells9010213
- Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00955
- Improved Computational Identification of Drug Response Using Optical Measurements of Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.01648
- Adult Tissue Extracellular Matrix Determines Tissue Specification of Human iPSC‐Derived Embryonic Stage Mesodermal Precursor Cells vol.7, pp.5, 2018, https://doi.org/10.1002/advs.201901198
- Quantitative Evaluation of the Sarcomere Network of Human hiPSC-Derived Cardiomyocytes Using Single-Molecule Localization Microscopy vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082819
- PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells vol.12, pp.8, 2020, https://doi.org/10.18632/aging.103088
- Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity vol.13, pp.3, 2020, https://doi.org/10.1007/s12265-020-09962-x
- Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges vol.21, pp.12, 2018, https://doi.org/10.3390/ijms21124354
- Three-dimensional scaffold-free microtissues engineered for cardiac repair vol.8, pp.34, 2020, https://doi.org/10.1039/d0tb01528h
- “Betwixt Mine Eye and Heart a League Is Took”: The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21196997
- Constant-potential environment for activating and synchronizing cardiomyocyte colonies with on-chip ion-depleting perm-selective membranes vol.20, pp.22, 2018, https://doi.org/10.1039/d0lc00809e
- Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6643615
- Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology vol.7, pp.None, 2021, https://doi.org/10.3389/fcvm.2020.604581
- Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes vol.12, pp.None, 2018, https://doi.org/10.3389/fphys.2021.710619
- Activation of AMPK Promotes Maturation of Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.644667
- Transcriptional, Electrophysiological, and Metabolic Characterizations of hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in Cardiomyocyte Maturation vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.787684
- Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects vol.246, pp.3, 2018, https://doi.org/10.1177/1535370220959598
- Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair vol.51, pp.2, 2018, https://doi.org/10.4070/kcj.2020.0518
- Microscale grooves regulate maturation development of hPSC‐CMs by the transient receptor potential channels (TRP channels) vol.25, pp.7, 2021, https://doi.org/10.1111/jcmm.16429
- Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis vol.8, pp.6, 2018, https://doi.org/10.3390/bioengineering8060080
- Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168482
- Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179517
- Conditioning of hiPSC-derived cardiomyocytes using surface topography obtained with high throughput technology vol.16, pp.6, 2018, https://doi.org/10.1088/1748-605x/ac1f73
- Upregulation of the JAK-STAT pathway promotes maturation of human embryonic stem cell-derived cardiomyocytes vol.16, pp.12, 2018, https://doi.org/10.1016/j.stemcr.2021.10.009
- Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-23329-z
- Current knowledge about cardiomyocytes maturation and endogenous myocardial regeneration. Background to apply this potential in humans with end-stage heart failure vol.9, pp.4, 2018, https://doi.org/10.2478/acb-2021-0021