DOI QR코드

DOI QR Code

Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells: Current Strategies and Limitations

  • Jiang, Yanqing (University of Toronto, Hospital of Sick Children) ;
  • Park, Peter (Emory University, Department of Biology) ;
  • Hong, Sang-Min (Department of Physical Education, Dongguk University Seoul) ;
  • Ban, Kiwon (Department of Biomedical Sciences, City University of Hong Kong)
  • Received : 2018.03.06
  • Accepted : 2018.05.10
  • Published : 2018.07.31

Abstract

The capacity of differentiation of human pluripotent stem cells (hPSCs), which include both embryonic stem cells and induced pluripotent stem cells, into cardiomyocytes (CMs) in vitro provides an unlimited resource for human CMs for a wide range of applications such as cell based cardiac repair, cardiac drug toxicology screening, and human cardiac disease modeling. However, their applicability is significantly limited by immature phenotypes. It has been well known that currently available CMs derived from hPSCs (hPSC-CMs) represent immature embryonic or fetal stage CMs and are functionally and structurally different from mature human CMs. To overcome this critical issue, several new approaches aiming to generate more mature hPSC-CMs have been developed. This review describes recent approaches to generate more mature hPSC-CMs including their scientific principles, advantages, and limitations.

Keywords

References

  1. Amin, A.S., Tan, H.L., and Wilde, A.A. (2010). Cardiac ion channels in health and disease. Heart Rhythm. 7, 117-126. https://doi.org/10.1016/j.hrthm.2009.08.005
  2. Camci-Unal, G., Annabi, N., Dokmeci, M.R., Liao, R., and Khademhosseini, A. (2014). Hydrogels for cardiac tissue engineering. NPG Asia Mater 6, e99. https://doi.org/10.1038/am.2014.19
  3. Chattergoon, N.N., Giraud, G.D., Louey, S., Stork, P., Fowden, A.L., and Thornburg, K.L. (2012). Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26, 397-408. https://doi.org/10.1096/fj.10-179895
  4. Davis, R.P., Casini, S., van den Berg, C.W., Hoekstra, M., Remme, C.A., Dambrot, C., Salvatori, D., Oostwaard, D.W., Wilde, A.A., Bezzina, C.R., et al. (2012). Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079-3091. https://doi.org/10.1161/CIRCULATIONAHA.111.066092
  5. DeForest, C.A., and Anseth, K.S. (2012). Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421-444. https://doi.org/10.1146/annurev-chembioeng-062011-080945
  6. Feric, N.T., and Radisic, M. (2016). Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110-134. https://doi.org/10.1016/j.addr.2015.04.019
  7. Gao, L., Gregorich, Z.R., Zhu, W., Mattapally, S., Oduk, Y., Lou, X., Kannappan, R., Borovjagin, A.V., Walcott, G.P., Pollard, A.E., et al. (2018). Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712-1730. https://doi.org/10.1161/CIRCULATIONAHA.117.030785
  8. Gherghiceanu, M., Barad, L., Novak, A., Reiter, I., Itskovitz-Eldor, J., Binah, O., and Popescu, L.M. (2011). Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J. Cell. Mol. Med 15, 2539-2551. https://doi.org/10.1111/j.1582-4934.2011.01417.x
  9. Hazeltine, L.B., Simmons, C.S., Salick, M.R., Lian, X., Badur, M.G., Han, W., Delgado, S.M., Wakatsuki, T., Crone, W.C., Pruitt, B.L., et al. (2012). Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int. J. Cell Biol. 2012, 508294.
  10. Hirt, M.N., Hansen, A., and Eschenhagen, T. (2014). Cardiac Tissue Engineering. Circ. Res. 114, 354. https://doi.org/10.1161/CIRCRESAHA.114.300522
  11. Jacot, J.G., McCulloch, A.D., and Omens, J.H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479-3487. https://doi.org/10.1529/biophysj.107.124545
  12. Kamakura, T., Makiyama, T., Sasaki, K., Yoshida, Y., Wuriyanghai, Y., Chen, J., Hattori, T., Ohno, S., Kita, T., Horie, M., et al. (2013). Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307-1314. https://doi.org/10.1253/circj.CJ-12-0987
  13. Kim, H.D., Kim, D.J., Lee, I.J., Rah, B.J., Sawa, Y., and Schaper, J. (1992). Human fetal heart development after mid-term: morphometry and ultrastructural study. J. Mol. Cell Cardiol. 24, 949-965. https://doi.org/10.1016/0022-2828(92)91862-Y
  14. Kim, C., Majdi, M., Xia, P., Wei, K.A., Talantova, M., Spiering, S., Nelson, B., Mercola, M., Chen, H.S. (2010). Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19, 783-795. https://doi.org/10.1089/scd.2009.0349
  15. Kohl, P., and Ravens, U. (2003). Cardiac mechano-electric feedback: past, present, and prospect. Prog. Biophys. Mol. Biol. 82, 3-9. https://doi.org/10.1016/S0079-6107(03)00022-1
  16. Kruger, M., Sachse, C., Zimmermann, W.H., Eschenhagen, T., Klede, S., and Linke, W.A. (2008). Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway. Circ. Res. 102, 439. https://doi.org/10.1161/CIRCRESAHA.107.162719
  17. Laflamme, M.A., and Murry, C.E. (2011). Heart regeneration. Nature 473, 326-335. https://doi.org/10.1038/nature10147
  18. Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015-1024. https://doi.org/10.1038/nbt1327
  19. Lee, P., Klos, M., Bollensdorff, C., Hou, L., Ewart, P., Kamp, T.J., Zhang, J., Bizy, A., Guerrero-Serna, G., Kohl, P., et al. (2012). Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ. Res. 110, 1556-1563. https://doi.org/10.1161/CIRCRESAHA.111.262535
  20. Lieu, D.K., Liu, J., Siu, C.W., McNerney, G.P., Tse, H.F., Abu-Khalil, A., Huser, T., and Li, R.A. (2009). Absence of transverse tubules contributes to non-uniform $Ca^{2+}$ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev. 18, 1493-1500. https://doi.org/10.1089/scd.2009.0052
  21. Liu, J., Laksman, Z., and Backx, P.H. (2016). The electrophysiological development of cardiomyocytes. Adv. Drug Deliv. Rev. 96, 253-273. https://doi.org/10.1016/j.addr.2015.12.023
  22. Lundy, S.D., Zhu, W.Z., Regnier, M., and Laflamme, M.A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991-2002. https://doi.org/10.1089/scd.2012.0490
  23. Ma, J., Guo, L., Fiene, S.J., Anson, B.D., Thomson, J.A., Kamp, T.J., Kolaja, K.L., Swanson, B.J., and January, C.T. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006-2017. https://doi.org/10.1152/ajpheart.00694.2011
  24. Martherus, R.S., Vanherle, S.J., Timmer, E.D., Zeijlemaker, V.A., Broers, J.L., Smeets, H.J., Geraedts, J.P., and Ayoubi, T.A. (2010). Electrical signals affect the cardiomyocyte transcriptome independently of contraction. Physiol Genomics 42A, 283-289. https://doi.org/10.1152/physiolgenomics.00182.2009
  25. Mihic, A., Li, J., Miyagi, Y., Gagliardi, M., Li, S.H., Zu, J., Weisel, R.D., Keller, G., and Li, R.K. (2014). The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cellderived cardiomyocytes. Biomaterials 35, 2798-2808. https://doi.org/10.1016/j.biomaterials.2013.12.052
  26. Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L.T., Park, S.Y., Silberstein, L.E., Dos Remedios, C.G., Graham, D., Colan, S., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 110, 1446-1451. https://doi.org/10.1073/pnas.1214608110
  27. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., Das, S.R., de Ferranti, S., Despres, J.P., Fullerton, H.J., et al. (2016). Heart disease and stroke statistics-2016 update. A Report From the American Heart Association 133, e38-e360.
  28. Nunes, S.S., Miklas, J.W., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., Jiang, J., Masse, S., Gagliardi, M., Hsieh, A., et al. (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781-787. https://doi.org/10.1038/nmeth.2524
  29. Oakley, R.H., and Cidlowski, J.A. (2015). Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J. Steroid. Biochem. Mol. Biol. 153, 27-34. https://doi.org/10.1016/j.jsbmb.2015.03.009
  30. Parikh, S.S., Blackwell, D.J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C.P., Fiane, A., Tonnessen, T., Kryshtal, D.O., et al. (2017). Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323-1330. https://doi.org/10.1161/CIRCRESAHA.117.311920
  31. Pasumarthi, K.B., and Field, L.J. (2002). Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044-1054. https://doi.org/10.1161/01.RES.0000020201.44772.67
  32. Pedron, S., van Lierop, S., Horstman, P., Penterman, R., Broer, D.J., and Peeters, E. (2011). Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv. Funct. Mater. 21, 1624-1630. https://doi.org/10.1002/adfm.201002708
  33. Peters, N.S., Green, C.R., Poole-Wilson, P.A., and Severs, N.J. (1993). Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88, 864-875. https://doi.org/10.1161/01.CIR.88.3.864
  34. Peters, N.S., Severs, N.J., Rothery, S.M., Lincoln, C., Yacoub, M.H., and Green, C.R. (1994). Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90, 713. https://doi.org/10.1161/01.CIR.90.2.713
  35. Prakash, Y.S., Cody, M.J., Housmans P.R., Hannon J.D., and Sieck, G.C. (1999). Comparison of cross-bridge cycling kinetics in neonatal vs. adult rat ventricular muscle. J. Muscle Res. Cell Motil 20, 717-723. https://doi.org/10.1023/A:1005585807179
  36. Robertson, C., Tran, D.D., and George, S.C. (2013). Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829-837. https://doi.org/10.1002/stem.1331
  37. Rog-Zielinska, E.A., Craig, M.A,. Manning, J.R., Richardson, R.V., Gowans, G.J., Dunbar, D.R., Gharbi, K., Kenyon, C.J., Holmes, M.C., Hardie, D.G., et al. (2015). Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-$1{\alpha}$. Cell Death Differ. 22, 1106-1116. https://doi.org/10.1038/cdd.2014.181
  38. Ruan, J.L., Tulloch, N.L., Razumova, M.V., Saiget, M., Muskheli, V., Pabon, L., Reinecke, H., Regnier, M., and Murry, C.E. (2016). Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557-1567. https://doi.org/10.1161/CIRCULATIONAHA.114.014998
  39. Sankova, B., Benes, J. Jr., Krejci, E., Dupays, L., Theveniau-Ruissy, M., Miquerol, L., and Sedmera, D. (2012). The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc Res. 95, 469-479. https://doi.org/10.1093/cvr/cvs210
  40. Sartiani, L., Bettiol, E., Stillitano, F., Mugelli, A., Cerbai, E., and Jaconi, M.E. (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25, 1136-1144. https://doi.org/10.1634/stemcells.2006-0466
  41. Scuderi, G.J. and Butcher, J. (2017). Naturally engineered maturation of cardiomyocytes. Front. Cell Dev. Biol. 5, 50. https://doi.org/10.3389/fcell.2017.00050
  42. Shadrin, I.Y., Allen, B.W., Qian, Y., Jackman, C.P., Carlson, A.L., Juhas, M.E., and Bursac, N. (2017). Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825. https://doi.org/10.1038/s41467-017-01946-x
  43. Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., Palpant, N.J., Gantz, J., Moyes, K.W., Reinecke, H., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322-325. https://doi.org/10.1038/nature11317
  44. Shigeru, M., Fukushima, S., Imanishi, Y., Kawamura, T., Mochizuki-Oda, N., Masuda, S., and Sawa, Y. (2016). Building a new treatment for heart failure-transplantation of induced pluripotent stem cellderived cells into the heart. Curr. Gene Ther. 16, 5-13. https://doi.org/10.2174/1566523216666160119094143
  45. Shimko, V.F., and Claycomb, W.C. (2008). Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng. Part A 14, 49-58.
  46. Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355-H2363. https://doi.org/10.1152/ajpheart.00020.2003
  47. Taber, L.A. (2001). Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3, 1-25. https://doi.org/10.1146/annurev.bioeng.3.1.1
  48. Takahashi, K., Kakimoto,Y., Toda, K., and Naruse, K. (2013). Mechanobiology in cardiac physiology and diseases. J. Cell Mol. Med. 17, 225-232. https://doi.org/10.1111/jcmm.12027
  49. Tulloch, N. L., Muskheli, V., Razumova, M.V., Korte, F.S., Regnier, M., Hauch, K.D., Pabon, L., Reinecke, H., and Murry, C.E. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47-59. https://doi.org/10.1161/CIRCRESAHA.110.237206
  50. Vanwinkle, W.B., Snuggs, M.B., and Buja, L.M. (1996). Cardiogel: A biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell. Dev. Biol. Anim. 32, 478-485. https://doi.org/10.1007/BF02723051
  51. Veerman, C.C., Kosmidis, G., Mummery, C.L., Casini, S., Verkerk, A.O., and Bellin, M. (2015). Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev. 24, 1035-1052. https://doi.org/10.1089/scd.2014.0533
  52. Vreeker, A., van Stuijvenberg, L., Hund, T.J., Mohler, P.J., Nikkels, P.G., and van Veen, T.A.. (2014). Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 9, e94722. https://doi.org/10.1371/journal.pone.0094722
  53. Wang, Y., Xu, H., Kumar, R., Tipparaju, S.M., Wagner, M.B., and Joyner, R.W. (2003). Differences in transient outward current properties between neonatal and adult human atrial myocytes. J. Mol. Cell Cardiol. 35, 1083-1092. https://doi.org/10.1016/S0022-2828(03)00200-1
  54. Yang, X., Pabon, L., and Murry, C.E. (2014a). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511-523. https://doi.org/10.1161/CIRCRESAHA.114.300558
  55. Yang, X., Rodriguez, M., Pabon, L., Fischer, K.A., Reinecke, H., Regnier, M., Sniadecki, N.J., Ruohola-Baker, H., and Murry, C.E. (2014b). Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell Cardiol. 72, 296-304. https://doi.org/10.1016/j.yjmcc.2014.04.005
  56. You, J.O., Rafat, M., Ye, G.J.C., and Auguste, D.T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 11, 3643-3648. https://doi.org/10.1021/nl201514a
  57. Zhang, J., Klos, M., Wilson, G.F., Herman, A.M., Lian, X., Raval, K.K., Barron, M.R., Hou, L., Soerens, A.G., Yu, J., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ. Res. 111, 1125-1136. https://doi.org/10.1161/CIRCRESAHA.112.273144
  58. Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30-41.
  59. Ziman, A.P., Gomez-Viquez, N.L., Bloch, R.J., and Lederer, W.J. (2010). Excitation-contraction coupling changes during postnatal cardiac development. J. Mol. Cell Cardiol. 48, 379-386. https://doi.org/10.1016/j.yjmcc.2009.09.016
  60. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223-230. https://doi.org/10.1161/hh0202.103644

Cited by

  1. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-49653-5
  2. The giant titin: how to evaluate its role in cardiomyopathies vol.40, pp.2, 2018, https://doi.org/10.1007/s10974-019-09518-w
  3. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy vol.116, pp.36, 2018, https://doi.org/10.1073/pnas.1910962116
  4. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies vol.20, pp.18, 2019, https://doi.org/10.3390/ijms20184381
  5. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines vol.189, pp.2, 2019, https://doi.org/10.1007/s12010-019-03012-2
  6. Modeling and simulation of human induced pluripotent stem cell‐derived cardiac tissue vol.42, pp.4, 2018, https://doi.org/10.1002/gamm.201900002
  7. A Proteomic Perspective on Cardiomyocyte Maturation vol.125, pp.11, 2018, https://doi.org/10.1161/circresaha.119.316039
  8. Maturing iPSC-Derived Cardiomyocytes vol.9, pp.1, 2018, https://doi.org/10.3390/cells9010213
  9. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00955
  10. Improved Computational Identification of Drug Response Using Optical Measurements of Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.01648
  11. Adult Tissue Extracellular Matrix Determines Tissue Specification of Human iPSC‐Derived Embryonic Stage Mesodermal Precursor Cells vol.7, pp.5, 2018, https://doi.org/10.1002/advs.201901198
  12. Quantitative Evaluation of the Sarcomere Network of Human hiPSC-Derived Cardiomyocytes Using Single-Molecule Localization Microscopy vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082819
  13. PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells vol.12, pp.8, 2020, https://doi.org/10.18632/aging.103088
  14. Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity vol.13, pp.3, 2020, https://doi.org/10.1007/s12265-020-09962-x
  15. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges vol.21, pp.12, 2018, https://doi.org/10.3390/ijms21124354
  16. Three-dimensional scaffold-free microtissues engineered for cardiac repair vol.8, pp.34, 2020, https://doi.org/10.1039/d0tb01528h
  17. “Betwixt Mine Eye and Heart a League Is Took”: The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21196997
  18. Constant-potential environment for activating and synchronizing cardiomyocyte colonies with on-chip ion-depleting perm-selective membranes vol.20, pp.22, 2018, https://doi.org/10.1039/d0lc00809e
  19. Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6643615
  20. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology vol.7, pp.None, 2021, https://doi.org/10.3389/fcvm.2020.604581
  21. Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes vol.12, pp.None, 2018, https://doi.org/10.3389/fphys.2021.710619
  22. Activation of AMPK Promotes Maturation of Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.644667
  23. Transcriptional, Electrophysiological, and Metabolic Characterizations of hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in Cardiomyocyte Maturation vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.787684
  24. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects vol.246, pp.3, 2018, https://doi.org/10.1177/1535370220959598
  25. Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair vol.51, pp.2, 2018, https://doi.org/10.4070/kcj.2020.0518
  26. Microscale grooves regulate maturation development of hPSC‐CMs by the transient receptor potential channels (TRP channels) vol.25, pp.7, 2021, https://doi.org/10.1111/jcmm.16429
  27. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis vol.8, pp.6, 2018, https://doi.org/10.3390/bioengineering8060080
  28. Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168482
  29. Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179517
  30. Conditioning of hiPSC-derived cardiomyocytes using surface topography obtained with high throughput technology vol.16, pp.6, 2018, https://doi.org/10.1088/1748-605x/ac1f73
  31. Upregulation of the JAK-STAT pathway promotes maturation of human embryonic stem cell-derived cardiomyocytes vol.16, pp.12, 2018, https://doi.org/10.1016/j.stemcr.2021.10.009
  32. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-23329-z
  33. Current knowledge about cardiomyocytes maturation and endogenous myocardial regeneration. Background to apply this potential in humans with end-stage heart failure vol.9, pp.4, 2018, https://doi.org/10.2478/acb-2021-0021