DOI QR코드

DOI QR Code

Control of interlayer spacing of expanded graphite for improved hydrogen storage capacity

  • Received : 2017.09.20
  • Accepted : 2017.12.20
  • Published : 2018.07.31

Abstract

Keywords

References

  1. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). https://doi.org/10.1038/35104634.
  2. Slorach SA. The WHO/UNEP pilot project on assessment of human exposure to pollutants through biological monitoring. Environ Monit Assess, 2, 33 (1982). https://doi.org/10.1007/bf00399153.
  3. Silanikove N, Koluman N. Impact of climate change on the dairy industry in temperate zones: predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Res, 123, 27 (2015). https://doi.org/10.1016/j.smallrumres.2014.11.005.
  4. Woolsey TS. Two treaties of Paris. Am J Int Law, 13, 81 (1919). https://doi.org/10.2307/2187976.
  5. Hsu CW. Constructing an evaluation model for hydrogen application pathways. Int J Hydrogen Energy, 38, 15836 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.100.
  6. Afgan NH, Carvalho MG. Sustainability assessment of hydrogen energy systems. Int J Hydrogen Energy, 29, 1327 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.005.
  7. Afgan NH, Veziroglu A, Carvalho MG. Multi-criteria evaluation of hydrogen system options. Int J Hydrogen Energy, 32, 3183 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.045.
  8. Dutta S. A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem, 20, 1148 (2014). https://doi.org/10.1016/j.jiec.2013.07.037.
  9. Zhou L. Progress and problems in hydrogen storage methods. Renewable Sustainable Energy Rev, 9, 395 (2005). https://doi.org/10.1016/j.rser.2004.05.005.
  10. Kaestner P, Michler T, Weidner H, Rie KT, Brauer G. Plasma nitrided austenitic stainless steels for automotive hydrogen applications. Surf Coat Technol, 203, 897 (2008). https://doi.org/10.1016/j.surfcoat.2008.08.024.
  11. Wind J, Spah R, Kaiser W, Bohm G. Metallic bipolar plates for PEM fuel cells. J Power Sources, 105, 256 (2002). https://doi.org/10.1016/S0378-7753(01)00950-8.
  12. Murr LE, Staudhammer KP, Hecker SS. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study. Metall Mater Trans A, 13, 627 (1982). https://doi.org/10.1007/BF02644428.
  13. Broom DP, Hirscher M. Irreproducibility in hydrogen storage material research. Energy Environ Sci, 9, 3368 (2016). https://doi.org/10.1039/C6EE01435F.
  14. Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources, 159, 781 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.047.
  15. Klebanoff LE, Keller JO. 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE). Int J Hydrogen Energy, 38, 4533 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.051.
  16. Han YJ, Park SJ. Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid. Carbon Lett, 16, 281 (2015). https://doi.org/10.5714/CL.2015.16.4.281.
  17. Yildirim T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett, 94, 175501 (2005). https://doi.org/10.1103/PhysRevLett.94.175501.
  18. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127 (2003). https://doi.org/10.1126/science.1083440.
  19. McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A. Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed, 45, 1804 (2006). https://doi.org/10.1002/anie.200504241.
  20. Kim JD, Roh JS, Kim MS. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber. Carbon Lett, 21, 51 (2017). http://dx.doi.org/10.5714/CL.2017.21.051.
  21. Kim DK, An KH, Bang YH, Kwac LK, Oh SY, Kim BJ. Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett, 19, 32 (2016). http://dx.doi.org/10.5714/CL.2016.19.032.
  22. Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison. Carbon Lett, 17, 39 (2016). http://dx.doi.org/10.5714/CL.2016.17.1.039.
  23. Lototskyy M, Yartys VA. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. J Alloys Compd, 645, S365 (2015). https://doi.org/10.1016/j.jallcom.2014.12.107.
  24. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 323, 610 (2009). https://doi.org/10.1126/science.1167130.
  25. Yasmin A, Luo JJ, Daniel IM. Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol, 66, 1182 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014.
  26. Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). https://doi.org/10.1016/j.micromeso.2008.02.027.
  27. Mu Y, Rabaey K, Rozendal RA, Yuan ZG, Keller J. Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol, 43, 5137 (2009). https://doi.org/10.1021/es900057f.
  28. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 45, 1686 (2007). https://doi.org/10.1016/j.carbon.2007.03.038.
  29. Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy, 33, 4112 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.077.
  30. Choi EK, Jeon IY, Oh SJ, Baek JB. "Direct" grafting of linear macromolecular "wedges" to the edge of pristine graphite to prepare edge-functionalized graphene-based polymer composites. J Mater Chem, 20, 10936 (2010). https://doi.org/10.1039/C0JM01728K.
  31. Zhao H, Lin R. Preparation of boric acid modified expandable graphite and its influence on polyethylene combustion characteristics. J Chil Chem Soc, 61, 2767 (2016). http://dx.doi.org/10.4067/S0717-97072016000100004.
  32. Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). https://doi.org/10.1016/j.jcis.2007.10.018.
  33. Lee HM, Heo YJ, An KH, Jung SC, Chung DC, Park SJ, Kim BJ. A study on optimal pore range for high pressure hydrogen storage behaviors by porous hard carbon materials prepared from a polymeric precursor. Int J Hydrogen Energy, 43, 5894 (2018). https://doi.org/10.1016/j.ijhydene.2017.09.085.
  34. Bond WL. Precision lattice constant determination. Acta Crystallogr, 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941.
  35. Aga RS, Fu CL, Krcmar M, Morris JR. Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption. Phys Rev B, 76, 165404 (2007). https://doi.org/10.1103/Phys-RevB.76.165404.
  36. Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schroder M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc, 131, 2159 (2009). https://doi.org/10.1021/ja806624j.
  37. Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu DJ. Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun, 46, 4547 (2010). https://doi.org/10.1039/C0CC00235F.
  38. Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.019.