DOI QR코드

DOI QR Code

Field Application Techniques of Simultaneous Mating Disruptor Against Grapholita molesta and G. dimorpha

복숭아순나방과 복숭아순나방붙이에 대한 동시 교미교란제의 현장 적용 기술

  • Cho, Jum-Rae (Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Chang-Gyu (Department of Industrial Entomology, Korea National College of Agriculture and Fisheries) ;
  • Park, Il-Kweon (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • 조점래 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박창규 (한국농수산대학 산업곤충학과) ;
  • 박일권 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2018.07.26
  • Accepted : 2018.08.24
  • Published : 2018.09.01

Abstract

Mating disruption (MD) has been widely used to effectively control Grapholita molesta in apple orchards. A simultaneous mating disruption (SMD) techniques have been developed to control both G. molesta and G. dimorpha. This study was performed to determine the practical parameters to apply the SMD technique to field conditions. To determine the application amount of SMD lures, a dispenser containing 10 mg pheromone was placed at different numbers of trees in an orchard. Application at every other tree (= one dispenser per two trees) was relatively safe to expect effective MD efficiency in both wax and polyethylene (PE) formulations. One time application at the end of March was enough to maintain a year round MD efficacy against both species. A fence treatment using food trap was applied to prevent any immigratory mated females from nearby untreated regions. To enhance the food trap by adding host-derived secondary compounds, terpinyl acetate (TA) was screened to be effective to attract females of Grapholita molesta among six compounds contained in apple fruit extracts. Among different TA concentrations, 0.05% TA treatment was the most effective to attract the adults. A mixture of TA and sugar was effective to attract and kill females and called FAKT (female attract-to-kill techniques). FAKT was treated at approximately 6 m interval at the edge of the apple orchards. The females trapped by the FAKT included mated females possessing vitellogenic oocytes. SMD supplemented with FAKT maintained the high MD efficacy and significantly suppressed leaf damage induced by the two insect pests compared to control or single SMD treatment.

교미교란(mating disruption, MD) 기술이 사과에 피해를 주는 복숭아순나방(Grapholita molesta) 방제에 널리 사용되고 있다. 복숭아순나방과 복숭아순나방붙이를 동시에 교미교란(simultaneous MD, SMD)하는 기술이 최근에 개발되었다. 본 연구는 이 SMD 기술을 현장에 접목하는 데 필요한 요인들을 결정하기 위해 수행되었다. SMD 처리 농도를 결정하기 위해 각 처리 지점에 10 mg의 성페로몬을 여러 가지 밀도로 사과나무에 처리하였다. 처리된 세 농도 가운데 두 나무마다 하나의 SMD 처리가 비교적 안정적으로 MD 효과를 유지하였다. 이러한 SMD 효과는 왁스 및 polyethylene 제형 모두에서 나타났다. 두 사과나무마다 하나의 SMD 처리 농도로 3월 말에 1회 처리한 경우 수확기까지 복숭아순나방과 복숭아순나방붙이에 대해 효과적 교미교란을 유지시켰다. 인근 무처리 과수원에서 SMD 처리 과수원으로 이주하여 들어오는 교미된 암컷의 이입을 막기 위해 울타리 처리 기술이 적용되었다. 암컷 유인제를 개발하기 위해 6종류의 사과 과실 추출물에 포함된 화합물 가운데 terpinyl acetate (TA)가 선발되었다. 서로 다른 TA 농도 처리에서 0.05%가 성충 유인에 가장 효과적이었다. TA와 설탕을 혼합한 것을 암컷유살제(female attract-to-kill technique, FAKT)라 명명하였다. 사과 과수원 가장자리를 따라 6 m 간격으로 FAKT를 설치한 울타리 처리는 교미된 암컷을 포획하였고, 이들은 난황형성과정을 진행하고 있는 난모세포를 지니고 있었다. FAKT가 가미된 SMD 처리는 높은 MD 효율을 유지하는 것은 물론이고 SMD 단독 처리에 비해 신초 피해를 현격하게 줄였다.

Keywords

References

  1. Arai, T., Takanashi, M., Ihara, F., Mochizuki, F., 2009. Emergence of adult male Grapholita dimorpha and periods of infestation of apple orchards in central Iwate prefecture, Japan. Annu. Rept. Plant Prot. North Jpn. 60, 238-244.
  2. Baker, T.C., Heath, J.J., 2005. Pheromones: function and use in insect control, in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive molecular insect science. Vol. 6. Elsevier, New York, pp. 407-459.
  3. Borchert, D.M., Stinner, R.E., Walgenbach, J.F., Kennedy, G.G., 2004. Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. J. Econ. Entomol. 97, 1353-1364. https://doi.org/10.1093/jee/97.4.1353
  4. Carde, R.T., Minks, A.K., 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40, 559-585. https://doi.org/10.1146/annurev.en.40.010195.003015
  5. Carde, A.M., Baker, T.C., Carde, R.T., 1979. Identification of a four-component sex pheromone of the female oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). J. Chem. Ecol. 5, 423-427. https://doi.org/10.1007/BF00987927
  6. Chen, Z.Z., Xu, L.X., Li, L.L., Wu, H.B., Xu, Y.Y., 2018a. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull. Entomol. Res. (In press).
  7. Chen, X.L., Su, L., Li, B.L., Li, G.W., Wu, J.X., 2018b. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck)(Lepidoptera: Tortricide) Arch. Insect Biochem. Physiol. 98, e21456. https://doi.org/10.1002/arch.21456
  8. Choi, K.H., Lee, D.H., Byun, B.K., Mochizuki, F., 2009. Occurrence of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), a new insect pest in apple orchards of Korea. Korean J. Appl. Entomol. 48, 417-421. https://doi.org/10.5656/KSAE.2009.48.4.417
  9. El-Sayed, A.M., 2007. The pherobase: database of insect pheromones and semiochemicals [http://www.pherobase.com/].
  10. Grimaldi, D., Engel, M.S., 2005. Evolution of the insects. Cambridge University Press, Cambridge.
  11. Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H., Krieger, J., 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci. 25, 2364-2373. https://doi.org/10.1111/j.1460-9568.2007.05512.x
  12. Gyorgyi, T.K., Roby-Shemkovitz, A.J., Lerner, M.R., 1988. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissuespecific developmentally regulated protein. Proc. Natl. Acad. Sci. USA 85, 9851-9855. https://doi.org/10.1073/pnas.85.24.9851
  13. Hallman, G.J., 2004. Ionizing irradiation quarantine treatment against oriental fruit moth (Lepidoptera: Tortricidae) in ambient and hypoxic atmosphere. J. Econ. Entomol. 97, 824-827. https://doi.org/10.1093/jee/97.3.824
  14. Han, K.S., Jung, J.K., Choi, K.H., Lee, S.W., Boo, K.S., 2001. Sex pheromone composition and male trapping of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Korea. J. Asia Pac. Entomol. 4, 31-35. https://doi.org/10.1016/S1226-8615(08)60099-0
  15. Il'inchev, A.L., Williams, D.G., Milner, A.D., 2004. Mating disruption barriers in pome fruit for improved control of oriental fruit moth, Grapholita molesta Busck (Lep., Tortricidae) in stone fruit under mating disruption. J. Appl. Entomol. 128, 126-132. https://doi.org/10.1111/j.1439-0418.2004.00822.x
  16. Jung, S., Kim, Y., 2008. Comparative analysis to damage reduction of host plant by applying a mating disruptor of the oriental fruit moth, Grapholita molesta, in two different cultivation environments of apple orchard. Korean J. Appl. Entomol. 47, 51-57. https://doi.org/10.5656/KSAE.2008.47.1.051
  17. Jung C.R., Kim, Y., 2013. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers. J. Asia Pac. Entomol. 16, 189-197. https://doi.org/10.1016/j.aspen.2013.01.008
  18. Jung, C.R., Kim, Y., 2014. Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics 103, 308-315. https://doi.org/10.1016/j.ygeno.2014.02.009
  19. Jung, S., Park, C., Park, M., Lee, S., Choi, K., Hong Y., Kim, Y., 2006. Efficacy of commercial mating disruptors on field overwintering populations of Oriental fruit moth, Grapholita molesta (Busck). Korean J. Appl. Entomol. 45, 235-240.
  20. Jung, S., Park, M., Lee, S., Choi, K., Hong, Y., Bae, S., Kim, Y., 2008. Development of wax-typed pheromone dispenser for mating discruption of the oriental fruit moth, Grapholita molesta, and its application technique. Korean J. Appl. Entomol. 47, 255-263. https://doi.org/10.5656/KSAE.2008.47.3.255
  21. Jung, C.R., Ahn, J.J., Eom, H.S., Seo, J.H., Kim, Y., 2012. Occurrence of Grapholita dimorpha in Korean pear orchards and cross-trapping of its sibling species, Grapholita molesta, to a pheromone lure. Korean J. Appl. Entomol. 51, 479-484. https://doi.org/10.5656/KSAE.2012.10.0.049
  22. Jung, C., Jung, J., Kim, Y., 2013. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. J. Asia Pac. Entomol. 16, 507-512. https://doi.org/10.1016/j.aspen.2013.08.004
  23. Jung, C.R., Kim, S.H., Kim, Y., 2014. Enhancement of speciesspecific attraction by addition of a minor component of sex pheromone gland of Grapholita dimorpha. Korean J. Appl. Entomol. 53, 239-246. https://doi.org/10.5656/KSAE.2014.01.1.071
  24. Kaissling, K.E., 2001. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26, 125-150. https://doi.org/10.1093/chemse/26.2.125
  25. Kim, Y., Bae, S., Choi, K., Lee, D., Lee, S., 2007. Efficacy test of mating disruptors using food trap of oriental fruit moth, Grapholita molesta (Busck). Korean J. Appl. Entomol.
  26. Kim, Y., Jung, S., Kim, Y., Lee, Y., 2011. Real-time monitoring of oriental fruit moth, Grapholita molesta, populations using a remote sensing pheromone trap in apple orchards. J. Asia Pac. Entomol. 14, 259-262. https://doi.org/10.1016/j.aspen.2011.03.008
  27. Kim, K, Park, C., Kim, Y., 2018. Simultaneous mating disruption of two Grapholita species in apple orchards. J. Asia Pac. Entool. (Submitted).
  28. Knight, A.L., Barros-Parada, W., Bosch, D., Escudero-Colomar, L.A., Fuentes-Contreras, E., Hernandez-Sanchez, J., Jung, C., Kim, Y., Kovanci, O.B., Levi, A., Lo, P., Molinari, F., Valls, J., Gemeno, C., 2014. Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull. Entomol. Res. 105, 23-31.
  29. Li, G.W., Du, J., Li, Y.P., Wu, J.X., 2015. Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis. PLoS One 10, e0142193. https://doi.org/10.1371/journal.pone.0142193
  30. Li, G.W., Zhang, Y., Li, Y.P., Wu, J.X., Xu, X.L., 2016. Cloning, expression, and functional of three odorant binding proteins of the oriental fruit moth, Grapholita molesta (Busck)(Lepidoptera: Tortricidae). Arch. Insect Biochem. Physiol. 91, 67-87. https://doi.org/10.1002/arch.21309
  31. Li, G.W., Chen, X.L., Xu, X.L., Wu, J.X., 2018. An antenna highly-enriched glutathione S-transferase in the oriental fruit moth, Grapholita molesta (Busck)(Lepidoptera: Tortricidae). Arch. Insect Biochem. Physiol. (In press).
  32. Lienard, M.A., Strandh, M., Hedenstrom, Johansson, T., Lofstedt, C., 2008. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol. Biol. 8, 270. https://doi.org/10.1186/1471-2148-8-270
  33. Murakami, Y., Sugie, H., Fukumoto, T., Mochizuki, F., 2005. Sex pheromone of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), and its utilization for monitoring. Appl. Entomol. Zool. 40, 521-527. https://doi.org/10.1303/aez.2005.521
  34. Natale, D., Mattiacci, L., Hern, A., Pasqualini, E., Dorn, S., 2003. Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bull. Entomol. Res. 93, 335-342.
  35. Neven, L.G., Kumar, S., Yee, W.L., Wakie, T., 2018. Current and future potential risk of establishment of Grapholita molesta (Lepidoptera: Tortricidae) in Washington state. Environ. Entomol. 47, 448-456. https://doi.org/10.1093/ee/nvx203
  36. Padilha, A.C., Arioli, C.J., Boff, M.I., Rosa, J.M., Botton, M., 2017. Traps and baits for luring Grapholita molesta (Busck) adults in mating disruption-treated apple orchards. Neotrop. Entomol. doi: 10.1007/s13744-017-0517-z.
  37. Park, K.T., Kim, J.M., 1986. Moths collected in the northen part of civilian control of line neighboring DMZ. Korean J. Plant Prot. 25, 77-83.
  38. Percy-Cunningham, J.E., MacDonald, J.A., 1987. Biology and ultrastructure of sex pheromone-producing glands, in: Prestwich, G.D., Blomquist, G.J. (Eds.), Pheromone biochemistry. Academic Press, Orlando, FL, pp. 27-75.
  39. Pinero, J.C., Dorn, S., 2007. Synergistic between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol. Exp. Appl. 125, 185-194. https://doi.org/10.1111/j.1570-7458.2007.00614.x
  40. Pinero, J.C., Giovanni Galizia, C., Dorn, S., 2008. Synergistic behavioral responses of female oriental fruit moths (Lepidoptera: Tortricidae) to synthetic host plant-derived mixtures are mirrored by odor-evoked calcium activity in their antennal lobes. J. Insect Physiol. 54, 333-343. https://doi.org/10.1016/j.jinsphys.2007.10.002
  41. Pree, D.J., Whitty, K.J., van Driel, L., Walker, G.M., van Driel, L., 1998. Resistance to insecticides in oriental fruit moth populations (Grapholita molesta) from the Niagara Peninsula of Ontario. Can. Entomol. 130, 245-256. https://doi.org/10.4039/Ent130245-3
  42. Roelofs, W.L., 1995. Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA 92, 44-49. https://doi.org/10.1073/pnas.92.1.44
  43. Rothschild, G.H.L., Vickers, R.A., 1991. Biology, ecology and control of oriental fruit moth, in: Van der Geest, L.P.S., Evenhuis, H.H. (Eds.), Tortricid pests. Vol. 5: Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, Netherlands, pp. 389-412.
  44. SAS Institute, 1989. SAS/STAT user's guide, release 6.03 ed. SAS Institute, Cary, NC, USA
  45. Scoble, M., 1992. The Lepidoptera: form, function and diversity Oxford University Press, Oxford.
  46. Song, Y.Q., Dong, J.F., Qiao, H.L., Wu, J.X., 2014. Molecular characterization, expression patterns and binding properties of two pheromone-binding proteins from the oriental fruit moth, Grapholita molesta (Busck). J. Integr. Agr. 13, 2709-2720. https://doi.org/10.1016/S2095-3119(13)60686-3
  47. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A., Leal, W.S., 2006. Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA 103, 16538-16543. https://doi.org/10.1073/pnas.0607874103
  48. Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163. https://doi.org/10.1038/293161a0
  49. Vogt, R.G., Rogers, M.E., Franco, M.D., Sun, M., 2002. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol. 205, 719-744.
  50. Vogt, R.G., Gro$\ss$e-Wilde, E., Zhou, J.J., 2015. The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem. Mol. Biol. 62, 142-153. https://doi.org/10.1016/j.ibmb.2015.03.003
  51. Xu, P., Atkinson, R., Jones, D.N., Smith, D.P., 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron. 45, 193-200. https://doi.org/10.1016/j.neuron.2004.12.031
  52. Yan, S., Liu, Y., Li, M., 1999. Grapholita dimorpha-a new record pest damage fruit trees of China. For. Pest Dis. 18, 15-16.
  53. Yang, C.Y., Han, K.S., Boo, K.S., 2001. Occurrence of and damage by the Oriental fruit moth, Grapholita molesta (Busck)(Lepidoptera: Tortricidae) in pear orchards. Korean J. Appl. Entomol. 40, 117-123.
  54. Yang, C.Y., Jung, J.K., Han, K.S., Boo, K.S., Yiem, M.S., 2002. Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. J. Asia Pac. Entomol. 5, 201-207. https://doi.org/10.1016/S1226-8615(08)60153-3
  55. Yoshizawa, E., Daerunoru, S., Kaneko, M., 2008. Occurrence of Grapholita dimorpha in Nagano apple orchards. Plant Prot. Jpn. 62, 556-559.
  56. Zhang, G.H., Li, Y.P., Xu, X.L., Chen, H., Wu, J.X., 2012. Identification and charcterization of two general odorant binding protein genes from the oriental fruit moth, Grapholita molesta (Busck). J. Chem. Ecol. 38, 427-436. https://doi.org/10.1007/s10886-012-0102-1
  57. Zhang, G.H., Chen, J., Yu, H.L., Tian, X.L., Wu, J.X., 2018. Molecular and functional characterization of pheromone binding protein1 from the oriental fruit moth, Grapholita molesta (Busck). Sci. Rep. 8, 2276. https://doi.org/10.1038/s41598-018-20719-0