DOI QR코드

DOI QR Code

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions

온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석

  • Cha, Wook Hyun (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University) ;
  • Kim, Kwang Ho (Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Dae-Weon (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University)
  • 차욱현 (경성대학교 화학생명과학부 생명과학전공) ;
  • 김광호 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이대원 (경성대학교 화학생명과학부 생명과학전공)
  • Received : 2018.05.18
  • Accepted : 2018.07.09
  • Published : 2018.09.01

Abstract

Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.

곤충은 넓은 범위의 온도영역에 사는 것으로 알려져 있으나, $40^{\circ}C$가 넘는 고온이나 빙결온도 이하의 저온에서는 생존이 어렵다. 본 연구는 사육온도 조건이 다른 환경에서 대사중심 조직인 지방체의 유전자 발현을 분석하기 위해, 온도조건을 달리하여 담배나방을 저온 사육충 ($3{\sim}10^{\circ}C$), 고온 사육충 ($35^{\circ}C$)로 나누고 상온 사육충 ($25^{\circ}C$)을 대조구로 사용하여 전사체 분석을 수행하였다. 저온에서 특이적으로 높은 발현을 보인 유전자는 표피단백질, ${\Delta}9$ 불포화효소, 글리세롤 3-인산 탈수소효소이며, 저온에서 발현이 낮아진 유전자는 키틴 합성효소, catalase, UDP-당전이 효소이다. 고온에서 특이적으로 높은 발현을 보인 유전자는 과산화물제거효소, metallothionein 2, phosphenolpyruvate carboxykinase, 트레할로스 운반단백질이었다. 고온에서 높고 저온에서 낮은 대조적 발현을 보인 유전자는 열충격단백질, glutathione peroxidase이었다. 이들 온도 특이적이거나 대조적 발현을 보이는 유전자는 기후변화에 관련한 특이마커로 활용이 가능할 것으로 사료된다.

Keywords

References

  1. Ahn, S.J., Badenes-Perez, F.R., Reichelt, M., Svatos, A., Schneider, B., Gershenzon, J., Heckel, D.G., 2011. Metabolic detoxification of capsaicin by UDP glycosyltransferase in three Helicoverpa species. Arch. Insect Biochem. Physiol. 78, 104-118. https://doi.org/10.1002/arch.20444
  2. Ahn, S.J., Vogel, H., Heckel, D.G., 2012. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42, 133-147. https://doi.org/10.1016/j.ibmb.2011.11.006
  3. Andersen, S.O., 2010. Insect cuticular sclerotization. Insect Biochem. Mol. Biol. 40, 166-178. https://doi.org/10.1016/j.ibmb.2009.10.007
  4. Andrews, G.K., 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 59, 95-104. https://doi.org/10.1016/S0006-2952(99)00301-9
  5. Aucoin, R.R., Philogene, B.J.R., Arnason, J.T., 1991. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16, 139-152. https://doi.org/10.1002/arch.940160206
  6. Basha, E., O'Neill, H., Vierling, E., 2012. Small heat shock proteins and ${\alpha}$-crystallins: dynamic proteins with flexible functions. Trends Biochem. Sci. 37, 106-117. https://doi.org/10.1016/j.tibs.2011.11.005
  7. Bashan, M., Cakmak, O., 2005. Changes in composition of phospholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 98, 575-579. https://doi.org/10.1603/0013-8746(2005)098[0575:CICOPA]2.0.CO;2
  8. Bouhin, H., Charles, J.-P., Quennedey, B., Courrent, A., Delachambre, J., 1992. Characterization of a cDNA clone encoding a glycine-rich cuticular protein of Tenebrio molitor: developmental expression and effect of a juvenile hormone analogue. Insect Mol. Biol. 1, 53-62. https://doi.org/10.1111/j.1365-2583.1993.tb00105.x
  9. Cai, Z., Chen, J., Cheng, J., Lin, T., 2017. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress. J. Insect Sci. 17, 1-11 https://doi.org/10.1093/jisesa/iew097
  10. Cha, W.H., Lee, D.-W., 2016. Identification of rapid cold hardeningrelated genes in the tobacco budworm, Helicoverpa assulta. J. Asia-Pacific Entomol. 19, 1061-1066. https://doi.org/10.1016/j.aspen.2016.09.007
  11. Chung, H., Carroll, S.B., 2015. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822-830. https://doi.org/10.1002/bies.201500014
  12. Clark, M.S., Worland, M.R., 2008. How insects survive the cold: molecular mechanisms. J. Comp. Physiol. B 178, 917-933. https://doi.org/10.1007/s00360-008-0286-4
  13. Colinet, H., Lee, S.F., Hoffmann, A., 2010. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277, 174-185. https://doi.org/10.1111/j.1742-4658.2009.07470.x
  14. Cutler, R.G., 1991. Human longevity and aging: possible role of reactive oxygen species. Ann. N. Y. Acad. Sci. 621, 1-28. https://doi.org/10.1111/j.1749-6632.1991.tb16965.x
  15. Drobnis, E.Z., Crowe, L.M., Berger, T., Anchordoguy, T.J., Overstreet, J.W., Crowe, J.H., 1993. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265, 432-437. https://doi.org/10.1002/jez.1402650413
  16. Droge, W., 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
  17. Duman, J.G., 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Ann. Rev. Physiol. 63, 327-357. https://doi.org/10.1146/annurev.physiol.63.1.327
  18. Eigenheer, R.A., Nicolson, S.W., Schegg, K.M., Hull, J.J., Schooley, D.A., 2002. Identification of a potent antidiuretic factor acting on beetle Malpighian tubules. Proc. Nat'l. Acad. Sci. USA 99, 84-89. https://doi.org/10.1073/pnas.012436199
  19. Fang, S.-M., 2012. Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull. Insectol. 65, 265-271.
  20. Feyereisen, R., 1999. Insect P450 enzymes. Ann. Rev. Entomol. 44, 507-533. https://doi.org/10.1146/annurev.ento.44.1.507
  21. Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. https://doi.org/10.1038/35041687
  22. Garcia-Reina, A., Rodriguez-Garcia, M.J., Ramis, G., Galian, J., 2017. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions. Insect Sci. 24, 358-370. https://doi.org/10.1111/1744-7917.12306
  23. Goto, S., Kimura, M., 1998. Heat-and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. J. Insect Physiol. 44, 1233-1239. https://doi.org/10.1016/S0022-1910(98)00101-2
  24. Guarente, L., Kenyon, C., 2000. Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262. https://doi.org/10.1038/35041700
  25. Halliwell, B., 2007. Biochemistry of oxidative stress. Inflammation 35, 1147-1150.
  26. Han, M.-W., Lee, J.-H., 1998. Survival and development of overwintering pupae of the oriental tobacco budworm, Helicoverpa assulta, from different locality. Korean J. Appl. Entomol. 37, 127-135.
  27. Hemingway, J., Hawkes, N.J., McCarroll, L., Ranson, H., 2004. The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34, 653-665. https://doi.org/10.1016/j.ibmb.2004.03.018
  28. Hopkins, T.L., Kramer, K.J., 1992. Insect cuticle sclerotization. Ann. Rev. Entomol. 37, 273-302. https://doi.org/10.1146/annurev.en.37.010192.001421
  29. Kim, Y., Ahmed, S., Stanley, D., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
  30. Kim, Y., Lee, D.-W., Jung, J.K., 2017. Rapid cold-hardening of a subtropical species, Maruca vitrata (Lepidoptera: Crambidae), accompanies hypertrehalosemia by upregulating trehalose-6-phosphate synthase. Environ. Entomol. 46, 1432-1438. https://doi.org/10.1093/ee/nvx153
  31. King, A.M., MacRae, T.H., 2015. Insect heat shock proteins during stress and diapause. Ann. Rev. Entomol. 60, 59-75. https://doi.org/10.1146/annurev-ento-011613-162107
  32. Klaassen, C.D., Liu, J., Diwan, B.A., 2009. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 238, 215-220. https://doi.org/10.1016/j.taap.2009.03.026
  33. Li, X., Schuler, M.A., Berenbaum, M.R., 2007 Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann. Rev. Entomol. 52, 231-253. https://doi.org/10.1146/annurev.ento.51.110104.151104
  34. Lomate, P., Sangole, K., Sunkar, R., Hivrale, V., 2015. Superoxide dismutase activities in the midgut of Helicoverpa armigera larvae: identification and biochemical properties of a manganese superoxide dismutase. Open Access Insect Physiol. 5, 13-20.
  35. Mitsumasu, K., Azuma, M., Niimi, T., Yamashita, O., Yaginuma, T., 2005. Membrane penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Mol. Biol. 14, 501-508. https://doi.org/10.1111/j.1365-2583.2005.00581.x
  36. Mizokami, H., Yoshitama, K., 2009. Sequestration and metabolism of host-plant flavonoids by the Pale Grass Blue, Pseudozizeeria maha (Lepidoptera: Lycaenidae). J. Entomol. Sci. 12, 171-176. https://doi.org/10.1111/j.1479-8298.2009.00322.x
  37. Mori, H., Lee, J.H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura, A., Chiba, S., 2009. Catalytic reaction mechanism based on alpha-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Biosci. Biotechnol. Biochem. 73, 2466-2473. https://doi.org/10.1271/bbb.90447
  38. Neven, L.G., 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103-111. https://doi.org/10.1016/S0925-5214(00)00169-1
  39. Park, Y., Kim, K.H., Kim, Y., 2014. Rapid Cold Hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083. https://doi.org/10.1603/EN13291
  40. Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203. https://doi.org/10.1242/jeb.092031
  41. Ranson, H., Hemingway, J., 2005. Glutathione transferases, in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive molecular insect sciencepharmacology. Elsevier, Oxford, UK, pp. 383-389.
  42. Robertson, H.M., Martos, R., Sears, C.R., Todres, E.Z., Walden, K.K.O., Nardi, J.B., 1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 8, 501-518. https://doi.org/10.1046/j.1365-2583.1999.00146.x
  43. Ruttkay-Nedecky, B., Nejdl, N., Gumulec, J., Zitka, O., 2013. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044-6066. https://doi.org/10.3390/ijms14036044
  44. Sable, M.G., Rana, D.K., 2016. Impact of global warming on insect behavior-A review. Agric. Rev. 37, 81-84.
  45. Sang, W., Ma, W.H., Qiu, L., Zhu, Z.H., Lei, C.L., 2012. The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J. Insect Physiol. 58, 830-836. https://doi.org/10.1016/j.jinsphys.2012.03.007
  46. Sharma, S., Rais, A., Sandhu, R., Nel, W., Ebadi, M., 2013. Clinical significance of metallothioneins in cell therapy and nanomedicine. Int. J. Nanomed. 8, 1477-1488.
  47. Shukla, E., Thorat, L.J., Nath, B.B., Gaikwad, S.M., 2015. Insect trehalase: physiological significance and potential applications. Glycobiology 25, 357-367. https://doi.org/10.1093/glycob/cwu125
  48. Stanley, D.W., Kim, Y., 2014. Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
  49. Stetina, T., Kostal, V., Korbelova, J., 2015. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One 10, e0128976. https://doi.org/10.1371/journal.pone.0128976
  50. Sugumaran, M., 2010. Chemistry of cuticular sclerotization. Adv. Insect Physiol. 39, 151-209.
  51. Takiguchi, M., Niimi, T., Su, Z.H., Yaginuma, T., 1992. Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. Biochem. J. 288, 19-22. https://doi.org/10.1042/bj2880019
  52. Tasaki, E., Kobayashi, K., Matsuura, K., Iuchi, Y., 2017. An efficient antioxidant system in a long-lived termite queen. PLoS One 12, e0167412. https://doi.org/10.1371/journal.pone.0167412
  53. Thompson, S.N., 2003. Trehalose-the insect 'blood' sugar. Adv. Insect Physiol. 31, 205-285.
  54. Vincent, J.F.V., 2009. If it's tanned it must be dry: a critique. J. Adhes. 85, 755-769. https://doi.org/10.1080/00218460903291296
  55. Wang, Q., Hasan, G., Pikielny, C.W., 1999. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J. Biol. Chem. 274, 10309-10315. https://doi.org/10.1074/jbc.274.15.10309
  56. Wang, Y., Oberley, L.W., Murhammer, D.W., 2001. Antioxidant defense systems of two Lepidopteran insect cell lines. Free Radic. Biol. Med. 30, 1254-1262. https://doi.org/10.1016/S0891-5849(01)00520-2
  57. Weirich, G.F., Collins, A.M., Williams, V.P., 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3-14. https://doi.org/10.1051/apido:2001001
  58. Wiesen, B., Krug, E., Fiedler, K., Wray, V., Proksch, P., 1994. Sequestration of host-plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. J. Chem. Ecol. 20, 2523-2538. https://doi.org/10.1007/BF02036189
  59. Yamamura, K., Kiritani, K., 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289-298. https://doi.org/10.1303/aez.33.289
  60. Yang, C.Y., Jeon, H.Y., Cho, M.R., Kim, D.S., Yiem, M.S., 2004. Seasonal occurrence of oriental tobacco budworm (Lepidoptera: Noctuidae) male and chemical control at red pepper fields. Korean J. Appl. Entomol. 43, 49-54.
  61. Zachariassen, K.E., Kristiansen, E., 2000. Ice nucleation and antinucleation in nature. Cryobiology 41, 257-279. https://doi.org/10.1006/cryo.2000.2289
  62. Zhang, J., Goyer, C., Pelletier, Y., 2008. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say). Insect Mol. Biol. 17, 209-216. https://doi.org/10.1111/j.1365-2583.2008.00796.x