DOI QR코드

DOI QR Code

Evaluation of Gastric Disease with Capsule Endoscopy

  • Nam, Seung-Joo (Department of Internal Medicine, Kangwon National University School of Medicine) ;
  • Lee, Hyun Seok (Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital) ;
  • Lim, Yun Jeong (Department of Internal Medicine, Dongguk University, College of Medicine, Dongguk University Ilsan Hospital)
  • Received : 2018.05.31
  • Accepted : 2018.07.16
  • Published : 2018.07.30

Abstract

The clinical indication for capsule endoscopy has expanded from small bowel evaluation to include esophagus or colon evaluation. Nevertheless, the role of capsule endoscopy in evaluation of the stomach is very limited because of the large volume and surface. However, efforts to develop an active locomotion system for capsule manipulation in detailed gastric evaluation are ongoing, because the technique is non-invasive, convenient, and safe, and requires no sedation. Studies have successfully reported gastric evaluation using a magnetic-controlled capsule endoscopy system. Advances in technology suggest that capsule endoscopy will have a major role not only in the evaluation of gastric disorders but also in the pathologic diagnosis, intervention, and treatment of any gastrointestinal tract disorder.

Keywords

References

  1. ASGE Technology Committee, Wang A, Banerjee S, et al. Wireless capsule endoscopy. Gastrointest Endosc 2013;78:805-815. https://doi.org/10.1016/j.gie.2013.06.026
  2. Sidhu R, Sanders DS, McAlindon ME. Does capsule endoscopy recognise gastric antral vascular ectasia more frequently than conventional endoscopy? J Gastrointestin Liver Dis 2006;15:375-377.
  3. Alkhormi AM, Memon MY, Alqarawi A. Gastric antral vascular ectasia: a case report and literature review. J Transl Int Med 2018;6:47-51. https://doi.org/10.2478/jtim-2018-0010
  4. Rey JF, Ogata H, Hosoe N, et al. Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointest Endosc 2012;75:373-381. https://doi.org/10.1016/j.gie.2011.09.030
  5. Takahashi Y, Fujimori S, Toyoda M, et al. The blind spot of an EGD: capsule endoscopy pinpointed the source of obscure GI bleeding on the dark side of the pylorus. Gastrointest Endosc 2011;73:607-608. https://doi.org/10.1016/j.gie.2010.08.033
  6. Jun BY, Lim CH, Lee WH, et al. Detection of neoplastic gastric lesions using capsule endoscopy: pilot study. Gastroenterol Res Pract 2013;2013:730261.
  7. Song HJ, Shim KN. Current status and future perspectives of capsule endoscopy. Intest Res 2016;14:21-29. https://doi.org/10.5217/ir.2016.14.1.21
  8. Peter S, Heuss LT, Beglinger C, Degen L. Capsule endoscopy of the upper gastrointestinal tract -- the need for a second endoscopy. Digestion 2005;72:242-247. https://doi.org/10.1159/000089959
  9. Delvaux M, Fassler I, Gay G. Clinical usefulness of the endoscopic video capsule as the initial intestinal investigation in patients with obscure digestive bleeding: validation of a diagnostic strategy based on the patient outcome after 12 months. Endoscopy 2004;36:1067-1073. https://doi.org/10.1055/s-2004-826034
  10. Kwack WG, Lim YJ. Current status and research into overcoming limitations of capsule endoscopy. Clin Endosc 2016;49:8-15.
  11. Slawinski PR, Obstein KL, Valdastri P. Capsule endoscopy of the future: what's on the horizon? World J Gastroenterol 2015;21:10528-10541. https://doi.org/10.3748/wjg.v21.i37.10528
  12. De Falco I, Tortora G, Dario P, Menciassi A. An integrated system for wireless capsule endoscopy in a liquid-distended stomach. IEEE Trans Biomed Eng 2014;61:794-804. https://doi.org/10.1109/TBME.2013.2290018
  13. Ciuti G, Calio R, Camboni D, et al. Frontiers of robotic endoscopic capsules: a review. J Microbio Robot 2016;11:1-18. https://doi.org/10.1007/s12213-016-0087-x
  14. Rahman I, Pioche M, Shim CS, et al. Magnetic-assisted capsule endoscopy in the upper GI tract by using a novel navigation system (with video). Gastrointest Endosc 2016;83:889-895.e1. https://doi.org/10.1016/j.gie.2015.09.015
  15. Lien GS, Liu CW, Jiang JA, Chuang CL, Teng MT. Magnetic control system targeted for capsule endoscopic operations in the stomach--design, fabrication, and in vitro and ex vivo evaluations. IEEE Trans Biomed Eng 2012;59:2068-2079. https://doi.org/10.1109/TBME.2012.2198061
  16. Keller J, Fibbe C, Volke F, et al. Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos). Gastrointest Endosc 2011;73:22-28. https://doi.org/10.1016/j.gie.2010.08.053
  17. Swain P, Toor A, Volke F, et al. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointest Endosc 2010;71:1290-1293. https://doi.org/10.1016/j.gie.2010.01.064
  18. Qian Y, Wu S, Wang Q, et al. Combination of five body positions can effectively improve the rate of gastric mucosa's complete visualization by applying magnetic-guided capsule endoscopy. Gastroenterol Res Pract 2016;2016:6471945.
  19. Mahoney AW, Abbott JJ. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int J Rob Res 2016;35:129-147. https://doi.org/10.1177/0278364914558006
  20. Yim S, Sitti M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans Robot 2012;28:183-194. https://doi.org/10.1109/TRO.2011.2163861
  21. Liao Z, Duan XD, Xin L, et al. Feasibility and safety of magnetic-controlled capsule endoscopy system in examination of human stomach: a pilot study in healthy volunteers. J Interv Gastroenterol 2012;2:155-160. https://doi.org/10.4161/jig.23751
  22. Keller H, Juloski A, Kawano H, et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2012 Jun 24-27; Rome, Italy. Piscataway Township (NJ): IEEE; 2012. p. 859-865.
  23. Rey JF, Ogata H, Hosoe N, et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy 2010;42:541-545. https://doi.org/10.1055/s-0030-1255521
  24. Denzer UW, Rosch T, Hoytat B, et al. Magnetically guided capsule versus conventional gastroscopy for upper abdominal complaints: a prospective blinded study. J Clin Gastroenterol 2015;49:101-107. https://doi.org/10.1097/MCG.0000000000000110
  25. Ciuti G, Donlin R, Valdastri P, et al. Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 2010;42:148-152. https://doi.org/10.1055/s-0029-1244103
  26. Liao Z, Hou X, Lin-Hu EQ, et al. Accuracy of magnetically controlled capsule endoscopy, compared with conventional gastroscopy, in detection of gastric diseases. Clin Gastroenterol Hepatol 2016;14:1266-1273. e1. https://doi.org/10.1016/j.cgh.2016.05.013
  27. Zou WB, Hou XH, Xin L, et al. Magnetic-controlled capsule endoscopy vs. gastroscopy for gastric diseases: a two-center self-controlled comparative trial. Endoscopy 2015;47:525-528. https://doi.org/10.1055/s-0034-1391123
  28. Valdastri P, Webster RJ III, Quaglia C, Quirini M, Menciassi A, Dario P. A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans Robot 2009;25:1047-1057. https://doi.org/10.1109/TRO.2009.2014127
  29. Quirini M, Menciassi A, Scapellato S, et al. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest Endosc 2008;67:1153-1158. https://doi.org/10.1016/j.gie.2007.11.052
  30. Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE ASME Trans Mechatron 2008;13:169-179. https://doi.org/10.1109/TMECH.2008.918491
  31. Gorini S, Quirini M, Menciassi A, Pernorio G, Stefanini C, Dario P. A novel SMA-based actuator for a legged endoscopic capsule. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics; 2006 Feb 20-22; Pisa, Italy. Piscataway Township (NJ): IEEE; 2006. p. 443-449.
  32. Park S, Park H, Park S, Kim B. A paddling based locomotive mechanism for capsule endoscopes. Journal of Mechanical Science and Technology 2006;20:1012-1018. https://doi.org/10.1007/BF02916000
  33. Kim HM, Yang S, Kim J, et al. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest Endosc 2010;72:381-387. https://doi.org/10.1016/j.gie.2009.12.058
  34. Kim B, Lee S, Park JH, Park J-O. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE ASME Trans Mechatron 2005;10:77-86. https://doi.org/10.1109/TMECH.2004.842222
  35. Kim B, Park S, Jee CY, Yoon S-J. An earthworm-like locomotive mechanism for capsule endoscopes. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2-6; Edmonton, Canada. Piscataway Township (NJ): IEEE; 2005. p. 2997-3002.
  36. Morita E, Ohtsuka N, Shindo Y, et al. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointest Endosc 2010;72:836-840. https://doi.org/10.1016/j.gie.2010.06.016
  37. Tortora G, Valdastri P, Susilo E, et al. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minim Invasive Ther Allied Technol 2009;18:280-290. https://doi.org/10.1080/13645700903201167
  38. Carta R, Tortora G, Thone J, et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens Bioelectron 2009;25:845-851. https://doi.org/10.1016/j.bios.2009.08.049
  39. Gorlewicz JL, Battaglia S, Smith BF, et al. Wireless insufflation of the gastrointestinal tract. IEEE Trans Biomed Eng 2013;60:1225-1233. https://doi.org/10.1109/TBME.2012.2230631
  40. Pasricha T, Smith BF, Mitchell VR, et al. Controlled colonic insufflation by a remotely triggered capsule for improved mucosal visualization. Endoscopy 2014;46:614-618. https://doi.org/10.1055/s-0034-1365497
  41. Ching HL, Hale MF, McAlindon ME. Current and future role of magnetically assisted gastric capsule endoscopy in the upper gastrointestinal tract. Therap Adv Gastroenterol 2016;9:313-321. https://doi.org/10.1177/1756283X16633052
  42. Imagawa H, Oka S, Tanaka S, et al. Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: a pilot study. Scand J Gastroenterol 2011;46:1133-1137. https://doi.org/10.3109/00365521.2011.584899
  43. Matsumura T, Arai M, Sato T, et al. Efficacy of computed image modification of capsule endoscopy in patients with obscure gastrointestinal bleeding. World J Gastrointest Endosc 2012;4:421-428. https://doi.org/10.4253/wjge.v4.i9.421
  44. Park S, Koo K-I, Bang SM, Park JY, Song SY, Cho D. A novel microactuator for microbiopsy in capsular endoscopes. J Micromech Microeng 2008;18:025032. https://doi.org/10.1088/0960-1317/18/2/025032
  45. Kong K-C, Cha J, Jeon D, Cho D-I. A rotational micro biopsy device for the capsule endoscope. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2-6; Edmonton, Canada. Piscataway Township (NJ): IEEE; 2005. p. 1839-1843.
  46. Valdastri P, Quaglia C, Susilo E, et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy 2008;40:979-982. https://doi.org/10.1055/s-0028-1103424
  47. Swain P. The future of wireless capsule endoscopy. World J Gastroenterol 2008;14:4142-4145. https://doi.org/10.3748/wjg.14.4142
  48. Rahman I, Kay M, Bryant T, et al. Optimizing the performance of magnetic-assisted capsule endoscopy of the upper GI tract using multiplanar CT modelling. Eur J Gastroenterol Hepatol 2015;27:460-466. https://doi.org/10.1097/MEG.0000000000000312

Cited by

  1. Medical Microrobot - A Drug Delivery Capsule Endoscope with Active Locomotion and Drug Release Mechanism: Proof of Concept vol.18, pp.1, 2020, https://doi.org/10.1007/s12555-019-0240-0
  2. Magnetically Assisted Capsule Endoscopy for Endoscopic Examination of Esophagus and Stomach-Beginning of the End of Flexible Esophagogastroscopy! vol.11, pp.3, 2018, https://doi.org/10.1055/s-0040-1718470
  3. Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia vol.173, pp.12, 2020, https://doi.org/10.7326/m20-1443
  4. 10.07uW Multi-Mode Baseband Transceiver for Encrypted Capsule Endoscopy vol.93, pp.1, 2018, https://doi.org/10.1007/s11265-020-01552-z
  5. Modular Capsules with Assembly and Separation Mechanism: Proof of Concept vol.10, pp.7, 2018, https://doi.org/10.3390/act10070159
  6. Examination of Entire Gastrointestinal Tract: A Perspective of Mouth to Anus (M2A) Capsule Endoscopy vol.11, pp.8, 2018, https://doi.org/10.3390/diagnostics11081367
  7. Capsule Endoscopy: Pitfalls and Approaches to Overcome vol.11, pp.10, 2018, https://doi.org/10.3390/diagnostics11101765
  8. Capsule Endoscopy for Gastric Evaluation vol.11, pp.10, 2018, https://doi.org/10.3390/diagnostics11101792
  9. Upper gastrointestinal video capsule endoscopy: The state of the art vol.46, pp.3, 2018, https://doi.org/10.1016/j.clinre.2021.101798