References
- Z. Aksu and O. Tunc, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40, 831-847 (2005). https://doi.org/10.1016/j.procbio.2004.02.014
- A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407(8), 2711-2723 (2009). https://doi.org/10.1016/j.scitotenv.2008.11.059
- X. Pan, C. Deng, D. Zhang, J. Wang, G. Mu, and Y. Chen, Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests, Aquat. Toxicol., 89, 207-213 (2008). https://doi.org/10.1016/j.aquatox.2008.06.018
- F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19(3), 260-265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006
- S. D. Baere and P. D. Backer, Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection, Anal. Chim. Acta., 586(1-2), 319-325 (2007). https://doi.org/10.1016/j.aca.2006.10.036
- I. Gozlan, A. Rotstein, and D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment, Chemosphere, 91, 985-992 (2013). https://doi.org/10.1016/j.chemosphere.2013.01.095
- A. Mohammadi, M. Kazemipour, H. Ranjbar, R. B. Walker, and M. Ansari, Amoxicillin removal from aqueous media using multi-walled carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 23(2), 165-169 (2014). https://doi.org/10.1080/1536383X.2013.866944
- E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039
- M. A. Chayid and M. J. Ahmed, Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies, J. Environ. Chem. Eng., 3, 592-1601 (2015).
- G. Moussavi, A. Alahabadi, K. Yaghmaeian, and M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217, 119-128 (2013). https://doi.org/10.1016/j.cej.2012.11.069
- F. Yu, Y. Li, S. Han, and J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153, 365-385 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.083
- J. Gao and J. A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals, Environ. Sci. Technol., 39, 9509-9516 (2005). https://doi.org/10.1021/es050644c
- M. Dutta, N. Dutta, and K. Bhattacharya, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon, Sep. Purif. Technol., 16, 213-224 (1999). https://doi.org/10.1016/S1383-5866(99)00011-8
- W. Adriano, V. Veredas, C. Santana, and L. Goncalves, Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models, Biochem. Eng. J., 27, 132-137 (2005). https://doi.org/10.1016/j.bej.2005.08.010
- R. Baccar, M. Sarra, J. Bouzid, M. Feki, and P. Blanquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211-212, 310-317 (2012). https://doi.org/10.1016/j.cej.2012.09.099
- R. Ding, P. Zhang, M. Seredych, and T. J. Bandosz, Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents, Water Res., 46, 4081-4090 (2012). https://doi.org/10.1016/j.watres.2012.05.013
- M. J. Ahmed and S. K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99, 101-109 (2013). https://doi.org/10.1016/j.jaap.2012.10.019
- H. R. Pouretedal and N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1, 64-73 (2014). https://doi.org/10.1016/j.jwpe.2014.03.006
- S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017). https://doi.org/10.14478/ACE.2017.1073
- C. H. Lee, S. K. Kam, and M. G. Lee, Adsorption characteristics analysis of 2,4-dichlorophenol in aqueous solution with activated carbon prepared from waste citrus peel using response surface modeling approach, Korean Chem. Eng. Res., 55(5), 723-730 (2017). https://doi.org/10.9713/KCER.2017.55.5.723
- S. K. Kam and M. G. Lee, Response surface modeling for the adsorption of dye Eosin Y by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(3), 270-277 (2018). https://doi.org/10.14478/ACE.2017.1130
- A. Ucer, A. Uyanik, and S. F. Aygun, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47(3), 113-118 (2006). https://doi.org/10.1016/j.seppur.2005.06.012
- H. Liu, Z. Hu, H. Liu, H. Xie, S. Lu, Q. Wang, and J. Zhang, Adsorption of amoxicillin by Mn-impregnated activated carbons: Performance and mechanisms, RSC Adv., 6, 11454-11460 (2016). https://doi.org/10.1039/C5RA23256B
- V. Homem, A. Alves, and L. Santos, Amoxicillin removal from aqueous matrices by sorption with almond shell ashes, Int. J. Environ. Anal. Chem., 90(14-15), 1063-1084 (2010). https://doi.org/10.1080/03067310903410964
- C. H. Lee, J. M. Park, and M. G. Lee, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24, 151-162 (2015). https://doi.org/10.5322/JESI.2015.24.2.151
- M. G. Lee, S. K. Kam, and K. H. Suh, Adsorption of non-degradable Eosin Y by activated carbon, J. Environ. Sci. Int., 21(5), 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
- M. Benamor, Z. Bouariche, T. Belaid, and M. T. Draa, Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant, Sep. Purif. Technol., 59(1), 74-84 (2008). https://doi.org/10.1016/j.seppur.2007.05.031
- I. Langmuir, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
- H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
- M. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60(2), 235-241 (1960). https://doi.org/10.1021/cr60204a006
- O. Pezoti, A. L. Cazetta, K. C. Bedin, L. S. Souza, A. C. Martins, T. L. Silva, O. O. S. Junior, J. V. Visentainer, and V. C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288, 778-788 (2016). https://doi.org/10.1016/j.cej.2015.12.042
- X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays- amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014). https://doi.org/10.1016/j.clay.2014.09.040
- S. X. Zha, Y. Zhou, X. Jin, and Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129, 569-576 (2013). https://doi.org/10.1016/j.jenvman.2013.08.032
- D. Hu and L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibrium and thermodynamic study, J. Taiwan Inst. Chem. Eng., 64, 227-234 (2016). https://doi.org/10.1016/j.jtice.2016.04.028
- M. Sekar, V. Sakthi, and S. Rengaraj, Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell, J. Colloid. Interface Sci., 279, 307-313 (2004). https://doi.org/10.1016/j.jcis.2004.06.042