DOI QR코드

DOI QR Code

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel

폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2018.02.18
  • Accepted : 2018.03.22
  • Published : 2018.08.10

Abstract

Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

폐감귤박 활성탄(WCAC, waste citrus peel based activated carbon)에 의한 항생제 아목시실린(AMX)의 흡착에서 온도, 초기농도, 접촉시간 및 흡착제 투여량과 같은 운전변수의 영향을 조사하기 위해 회분식 실험을 수행하였다. 흡착 속도 및 등온 실험결과는 각각 유사 2차 속도식 및 Langmuir 등온 모델에 의해 잘 설명될 수 있었다. Langmuir 등온 모델로부터 계산된 WCAC에 의한 AMX의 최대 흡착량은 345.49 mg/g이었다. WCAC에 의한 AMX의 흡착은 흡착 과정에서 막 확산(외부 물질 전달)과 입자 내부 확산이 동시에 일어난다는 것을 보여 주었다. 흡착 속도는 WCAC의 입자 크기가 증가함에 따라 외부 물질 전달보다 입자 내부 확산에 의해 더 영향을 받았고, 입자 내부 확산이 율속 단계였다. 열역학적 파라미터는 WCAC에 의한 AMX의 흡착 반응은 흡열반응이고 자발적인 과정임을 나타내었다.

Keywords

References

  1. Z. Aksu and O. Tunc, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40, 831-847 (2005). https://doi.org/10.1016/j.procbio.2004.02.014
  2. A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407(8), 2711-2723 (2009). https://doi.org/10.1016/j.scitotenv.2008.11.059
  3. X. Pan, C. Deng, D. Zhang, J. Wang, G. Mu, and Y. Chen, Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests, Aquat. Toxicol., 89, 207-213 (2008). https://doi.org/10.1016/j.aquatox.2008.06.018
  4. F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19(3), 260-265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006
  5. S. D. Baere and P. D. Backer, Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection, Anal. Chim. Acta., 586(1-2), 319-325 (2007). https://doi.org/10.1016/j.aca.2006.10.036
  6. I. Gozlan, A. Rotstein, and D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment, Chemosphere, 91, 985-992 (2013). https://doi.org/10.1016/j.chemosphere.2013.01.095
  7. A. Mohammadi, M. Kazemipour, H. Ranjbar, R. B. Walker, and M. Ansari, Amoxicillin removal from aqueous media using multi-walled carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 23(2), 165-169 (2014). https://doi.org/10.1080/1536383X.2013.866944
  8. E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039
  9. M. A. Chayid and M. J. Ahmed, Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies, J. Environ. Chem. Eng., 3, 592-1601 (2015).
  10. G. Moussavi, A. Alahabadi, K. Yaghmaeian, and M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217, 119-128 (2013). https://doi.org/10.1016/j.cej.2012.11.069
  11. F. Yu, Y. Li, S. Han, and J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153, 365-385 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.083
  12. J. Gao and J. A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals, Environ. Sci. Technol., 39, 9509-9516 (2005). https://doi.org/10.1021/es050644c
  13. M. Dutta, N. Dutta, and K. Bhattacharya, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon, Sep. Purif. Technol., 16, 213-224 (1999). https://doi.org/10.1016/S1383-5866(99)00011-8
  14. W. Adriano, V. Veredas, C. Santana, and L. Goncalves, Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models, Biochem. Eng. J., 27, 132-137 (2005). https://doi.org/10.1016/j.bej.2005.08.010
  15. R. Baccar, M. Sarra, J. Bouzid, M. Feki, and P. Blanquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211-212, 310-317 (2012). https://doi.org/10.1016/j.cej.2012.09.099
  16. R. Ding, P. Zhang, M. Seredych, and T. J. Bandosz, Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents, Water Res., 46, 4081-4090 (2012). https://doi.org/10.1016/j.watres.2012.05.013
  17. M. J. Ahmed and S. K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99, 101-109 (2013). https://doi.org/10.1016/j.jaap.2012.10.019
  18. H. R. Pouretedal and N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1, 64-73 (2014). https://doi.org/10.1016/j.jwpe.2014.03.006
  19. S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017). https://doi.org/10.14478/ACE.2017.1073
  20. C. H. Lee, S. K. Kam, and M. G. Lee, Adsorption characteristics analysis of 2,4-dichlorophenol in aqueous solution with activated carbon prepared from waste citrus peel using response surface modeling approach, Korean Chem. Eng. Res., 55(5), 723-730 (2017). https://doi.org/10.9713/KCER.2017.55.5.723
  21. S. K. Kam and M. G. Lee, Response surface modeling for the adsorption of dye Eosin Y by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(3), 270-277 (2018). https://doi.org/10.14478/ACE.2017.1130
  22. A. Ucer, A. Uyanik, and S. F. Aygun, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47(3), 113-118 (2006). https://doi.org/10.1016/j.seppur.2005.06.012
  23. H. Liu, Z. Hu, H. Liu, H. Xie, S. Lu, Q. Wang, and J. Zhang, Adsorption of amoxicillin by Mn-impregnated activated carbons: Performance and mechanisms, RSC Adv., 6, 11454-11460 (2016). https://doi.org/10.1039/C5RA23256B
  24. V. Homem, A. Alves, and L. Santos, Amoxicillin removal from aqueous matrices by sorption with almond shell ashes, Int. J. Environ. Anal. Chem., 90(14-15), 1063-1084 (2010). https://doi.org/10.1080/03067310903410964
  25. C. H. Lee, J. M. Park, and M. G. Lee, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24, 151-162 (2015). https://doi.org/10.5322/JESI.2015.24.2.151
  26. M. G. Lee, S. K. Kam, and K. H. Suh, Adsorption of non-degradable Eosin Y by activated carbon, J. Environ. Sci. Int., 21(5), 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  27. M. Benamor, Z. Bouariche, T. Belaid, and M. T. Draa, Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant, Sep. Purif. Technol., 59(1), 74-84 (2008). https://doi.org/10.1016/j.seppur.2007.05.031
  28. I. Langmuir, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
  29. H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
  30. M. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60(2), 235-241 (1960). https://doi.org/10.1021/cr60204a006
  31. O. Pezoti, A. L. Cazetta, K. C. Bedin, L. S. Souza, A. C. Martins, T. L. Silva, O. O. S. Junior, J. V. Visentainer, and V. C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288, 778-788 (2016). https://doi.org/10.1016/j.cej.2015.12.042
  32. X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays- amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014). https://doi.org/10.1016/j.clay.2014.09.040
  33. S. X. Zha, Y. Zhou, X. Jin, and Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129, 569-576 (2013). https://doi.org/10.1016/j.jenvman.2013.08.032
  34. D. Hu and L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibrium and thermodynamic study, J. Taiwan Inst. Chem. Eng., 64, 227-234 (2016). https://doi.org/10.1016/j.jtice.2016.04.028
  35. M. Sekar, V. Sakthi, and S. Rengaraj, Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell, J. Colloid. Interface Sci., 279, 307-313 (2004). https://doi.org/10.1016/j.jcis.2004.06.042