DOI QR코드

DOI QR Code

A bias adjusted ratio-type estimator

편향 보정 비형태추정량에 관한 연구

  • Oh, Jung-Taek (Department of Statistics, Hankuk University of Foreign Studies) ;
  • Shin, Key-Il (Department of Statistics, Hankuk University of Foreign Studies)
  • 오정택 (한국외국어대학교 통계학과) ;
  • 신기일 (한국외국어대학교 통계학과)
  • Received : 2018.05.28
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.

표본조사에서는 정확한 모수 추정을 위한 다양한 방법이 개발되었으며 이 중에서 보조정보를 이용한 비추정량 또는 회귀추정량이 흔히 사용된다. 최근 많은 연구가 진행되고 있는 비형태추정량(ratio type estimator)은 비추정량의 단점을 보완하여 추정의 정확성을 향상시키는 것으로 알려져 있다. 그러나 비형태추정량은 편향이 있는 것으로 알려져 있어 이를 해결하기 위한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 편향을 제거하기 위해 비형태추정량에 새로운 모수를 추가한 일반화 비형태추정량(generalized ratio-type estimator)을 제안하였다. 또한 사업체조사와 같이 등분산성을 만족하지 않는 자료에서 추정의 정확성 향상을 위해 모형의 오차에 포함된 분산 모수를 추정하고 제안된 추정량을 적용하는 방법을 제안하였다. 또한 모의실험을 통해 일반화 비형태추정량은 기존의 비추정량에 비해 매우 우수한 결과를 주는 것을 확인하였다.

Keywords

References

  1. Clement, E. P. and Enang, E. I. (2017). On the efficiency of ratio estimator over the regression estimator, Communications in Statistics-Theory and Methods, 46, 5357-5367. https://doi.org/10.1080/03610926.2015.1100741
  2. Etuk, S. I., Enang, E. I., and Ekpenyong, E. J. (2016). A modified class of ratio estimators for population mean, Communications in Statistics-Theory and Methods, 45, 837-849. https://doi.org/10.1080/03610926.2013.851238
  3. Haq, A., Khan, M., and Hussain, Z. (2017). A new estimator of finite population mean based on the dual use of the auxiliary information, Communications in Statistics-Theory and Methods, 46, 4425-4436 https://doi.org/10.1080/03610926.2015.1083112
  4. Khan, M. and Singh, R. (2015). Estimation of population mean in chain ratio-type estimator under systematic sampling, Journal of Probability and Statistics, 2015, 248374-248378
  5. Koyuncu, N. and Kadilar, C. (2009). Family of estimators of population mean using two auxiliary variable in stratified random sampling, Communications in Statistics-Theory and Methods, 38, 2938-2417.
  6. Lone, H. A., Tailor, R., and Singh, H. P., (2015), Generalized ratio-cum-product type exponential estimator in stratified random sampling, Communications in Statistics-Theory and Methods, 45, 3302-3309.
  7. Oh, J. T. and Shin, K. I. (2017). A study on the ratio type estimator in survey sampling, The Korean Association for Survey Research, 18, 105-125
  8. Sharma, P. and Singh, R. (2014). Improved ratio type estimator using two auxiliary variables under second order approximation, mathematical Journal of Interdisciplinary Sciences, 2, 179-190 https://doi.org/10.15415/mjis.2014.22014
  9. Singh, H. P., Kumar, S., and Kozak, M. (2010). Improved estimation of finite-population mean using sub-sampling to deal with non response in two-phase sampling scheme, Communications in Statistics-Theory and Methods, 39, 791-802 https://doi.org/10.1080/03610920902796056
  10. Singh, H. P. and Vishwakarma, G. K. (2007). Modified exponential ratio and product estimators for finite population mean in double sampling, Austrian Journal of Statistics, 36, 217-225
  11. Singh, R. and Singh, H. P. (1998). Almost unbiased ratio and product-type estimators in systematic sampling, Questiio, 22, 403-416
  12. Swain, A. (2014). On an improved ratio type estimator of finite population mean in sample surveys, Investigacion Operacional, 35, 49-57
  13. Tailor, R., Chouhan, S., and Kim, J.-M. (2014). Ratio and product type exponential estimators of population mean in double sampling for stratification, Communications for Statistical Applications and Methods, 21, 1-9. https://doi.org/10.5351/CSAM.2014.21.1.001
  14. Tailor, R., Lone, H. A., and Pandey, R. (2015). Generalized ratio-cum-product type estimator of finite population mean in double sampling for stratification, Communications for Statistical Applications and Methods, 22, 255-264. https://doi.org/10.5351/CSAM.2015.22.3.255