DOI QR코드

DOI QR Code

Modern diatom seasonal variation records from the bottom sediments of reservoirs, southern area in Korean Peninsula

한반도 남부지역의 저수지에서 계절 변화에 따른 규조류 변화 기록

  • Young-Suk Bak (Dept. of Earth and Environmental Sciences, Chonbuk National University) ;
  • Sangheon Yi (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Dong Wook Kim (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Eunmi Lee (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yongmi Kim (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang Pyo Jun (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jin Cheul Kim (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Han Woo Choi (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Moon Sang Shin (Dept. of Earth and Environmental Sciences, Chonbuk National University)
  • 박영숙 (전북대학교 지구환경과학과) ;
  • 이상헌 (한국지질자원연구원 국토지질연구본부) ;
  • 김동욱 (한국지질자원연구원 국토지질연구본부) ;
  • 이은미 (한국지질자원연구원 국토지질연구본부) ;
  • 김용미 (한국지질자원연구원 국토지질연구본부) ;
  • 전창표 (한국지질자원연구원 국토지질연구본부) ;
  • 김진철 (한국지질자원연구원 국토지질연구본부) ;
  • 최한우 (한국지질자원연구원 국토지질연구본부) ;
  • 신문상 (전북대학교 지구환경과학과)
  • Received : 2018.11.20
  • Accepted : 2018.12.27
  • Published : 2018.12.31

Abstract

We investigated the seasonal variation of diatoms from the modern bottom floor sediments of the reservoirs distributed in the southern part of the Korean Peninsula. The studied reservoirs include each three reservoirs from Southeastern part, Central Southern part and Southwestern part, respectively, to compare the dominant diatom assemblages that are ecologically controlled by local environments. In the Southeastern region, Aulacoseira spp., Fragilaria crotonensis, Fragilaria tenera, Gomphonema gracile, G. parvulum and Gyrosigma attenuatum were dominant species. Aulacoseira spp., Cymbella tumida, Cymbella turgidula, Diploneis finnica and Fragilaria crotonensis were dominant taxa in the Central Southern regions. In the southwestern region, Aulacoseira spp., Fragilaria crotonensis, Gomphonema parvulum and Stenopterobia curvular were predominated. Of which Aulacoseira spp. were predominant species at all reservoirs. In addition most of dominants are saproxenous taxa living in the clean water area, and the water quality of these reservoirs is considered to be less polluted water. As a result of seasonal comparison of diatom productivity, the first productivity is higher in summer than in winter. However, diatom valve abundance in the southeastern reservoirs was fewer from the samples collected at May than February.

한반도 남부에 분포하는 저수지로부터 규조의 계절별 변화를 파악하기 위하여 마지저수지, 죽토저수지, 월정소류지(남동부), 화영과 화동저수지, 월용저수지(남중부), 원선2제, 장동제와 만년1제(남서부)등 총 8곳으로부터 계절별로 수거한 저수지 퇴적물 시료를 분석하였다. 규조를 분석한 결과, 남동부 지역에서는 우점종으로서 Aulacoseira spp., Fragilaria crotonensis, Fragilaria tenera, Gomphonema gracile, G. parvulum, Gyrosigma attenuatum등이 산출되었다. 남중부 지역에서는 Aulacoseira spp., Cymbella tumida, Cymbella turgidula, Diploneis finnica, Fragilaria crotonensis등이 우점으로 산출되었다. 남서부 지역에서는 Aulacoseira spp., Fragilaria crotonensis, Gomphonema parvulum, Stenopterobia curvular가 역시 우점으로 산출되었다. 산출된 대부분의 우점종들이 청정수역에서 서식하는 종(Saproxenous taxa)들로서 이들 저수지의 수질 환경은 오염되지 않은 수역으로 생각된다. 계절별로 규조의 생산성을 비교한 결과, 겨울철보다 여름철에 더욱 풍부하게 나타나는 것이 일반적이나, 남동부의 저수지들에서는 2월보다 5월에 채취한 시료들에서 규조의 개체수 농도가 낮아지는 특징을 보인다.

Keywords

Acknowledgement

이 연구는 한국지질자원연구원의 주요과제 "지질 기록체를 활용한 한반도 아열대화 규명 연구: 중기 홀로세 기후-특성 평가(GP2017-013)"의 일환으로 수행되었다.

References

  1. Armbrust, V., 2009. The life of diatoms in the world's oceans. Nature 4, 185-192.  https://doi.org/10.1038/nature08057
  2. Asai, K., Watanabe, T., 1995. Statistic classification of epilithic diatom species into three ecological groups relating to organic water pollution (2) Saprophilous and saproxenous taxa. Diatom 10, 35-47. 
  3. Cohen A.S., 2003. Paleolimnology; The history and evolution of lake systems. Oxford University Press, 528 p.
  4. Denys, L., Muylaert, K., Krammer, K., Joosten, T., Reid, M., Rioual, P., 2003. Aulacoseira subborealis stat. nov. (Bacillariophyceae): a common but neglected plankton diatom. Nova Hedwigia 77, 407-427.  https://doi.org/10.1127/0029-5035/2003/0077-0407
  5. Descy, J.P., Mouvet, C., 1984. Impact of the Tihange nuclear power plant on the periphyton and the phytoplankton of the Meuse River (Belgium). Hydrobiologia 119, 119-128.  https://doi.org/10.1007/BF00011951
  6. Freund, H., Gerdes, G., Strief, H., Dellwig, O., Watermann, F., 2004. The indicative meaning of diatoms, pollen and botanical macro fossils for the reconstruction of palaeoenvironments and sea-level fluctuations along the coast of Lower Saxony; Germany. Quaternary International 112, 71-87.  https://doi.org/10.1016/S1040-6182(03)00066-1
  7. Gale, D.S.. 2015. Diatoms as indicators of ecological change in freshwater reservoirs of South East Queensland: Diatoms as indicators in South East Queensland. The University of Queensland PhD Thesis, 120  p.
  8. Kato, M., Tanimura, Y., Fukusawa, H., 2004. Survival strategy of diatom species living on now-depositing non-glacial varves. Quaternary International 123-125, 21-26.  https://doi.org/10.1016/j.quaint.2004.02.004
  9. Kashima, K., 2003. The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the Late Quaternary. Quaternary International 105, 13-19.  https://doi.org/10.1016/S1040-6182(02)00145-3
  10. Kelly, M.G., Whitton, B.A., 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7, 433-444.  https://doi.org/10.1007/BF00003802
  11. Kupe, L., Schanz, F., Bachofen, R., 2008. Biodiversity in the benthic diatom community in the upper river toss reflected in water quality indices. CLEAN-Soil Air Water 36, 84-91.  https://doi.org/10.1002/clen.200700053
  12. Negro, A.I., De Hoyos, C., Aldasoro, J.J., 2003. Diatom and desmid relationships with the environment in mountain lakes and mires of NW Spain. Hydrobiologia 505, 1-13.  https://doi.org/10.1023/B:HYDR.0000007212.78065.c1
  13. Ojala, A.E.K., Heinsalu, A., Saarnisto, M., Tiljander, M., 2005. Annually laminated sediments date the drainage of the Ancylus Lake and early Holocene shoreline displacement in central Finland, Quaternary International 130, 63-73.  https://doi.org/10.1016/j.quaint.2004.04.032
  14. Pan, Y., Stevenson, R.J., Hill, B.H., Herlihy, A.T., Collins, G.B., 1996. Using diatoms as indicators of ecological conditions in lotic systems: A regional assessment. Journal of the North American Benthological Society 15, 481-495.  https://doi.org/10.2307/1467800
  15. Patrick, R., Reimer, C.W., 1966. The diatoms of the United States (exclusive of Alaska and Hawaii). Volume 1: Systematic descriptions of diatoms of the taxonomic orders Fragilariales, Eunotiales, Achnanthales, and Navicuales (family Naviculaceae). The Academy of Natural Sciences, Philadelphia 
  16. Pringle, C.M., Bowers, J.A., 1984. An in situ substratum fertilization technique: Diatom colonization on nutrient-enriched, sand substrata. Canadian Journal of Fisheries and Aquatic Sciences, 41, 1247-1251.  https://doi.org/10.1139/f84-150
  17. Reid, M.A., Ogden, R.W., 2009. Factors affecting diatom distribution in floodplain lakes of the southeast Murray Basin, Australia and implications for palaeolimnological studies. Journal of Paleolimnology 41, 453-470.  https://doi.org/10.1007/s10933-008-9236-0
  18. Sabater, S., Roca, J.R., 1992. Ecological and biogeographical aspects of diatom distribution in Pyrenean springs. British Phycological Journal 27, 203-213.  https://doi.org/10.1080/00071619200650201
  19. Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology 12, 171-180.  https://doi.org/10.1007/BF00678093
  20. Smol, J.P., 2001. The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge. 
  21. Squires, L.E., Rushforth, S.R., Brotherson, J.D., 1979. Algal response to a thermal effluent: Study of a power station on the Provo River, Utah, USA. Hydrobiologia 63, 17-32.  https://doi.org/10.1007/BF00021013
  22. Taylor, J.C., Prygiel, J., Vosloo, A., de la Rey, P.A., Rensburg, L.V., 2007. Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. Hydrobiologia 592, 455-464.  https://doi.org/10.1007/s10750-007-0788-1
  23. Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A code checklist and ecological indicator values of fresh water diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117-133.  https://doi.org/10.1007/BF02334251
  24. Vieira, A.A.H., Ortolano, P.I.C., Giroldo, D., Oliveira, M.J.D., 2008. Role of hydrophobic extracellular polysaccharide of Aulacoseira granulata (Bacillariophyceae) on aggregate formation in a turbulent and hypereutrophic reservoir. Limnology and Oceanography 53, 1887-1899.  https://doi.org/10.4319/lo.2008.53.5.1887
  25. Vos, P.C., Gerrets, D.A., 2005. Archaeology: a major tool in the reconstruction of the coastal evolution of Westergo (northern Netherlands). Quaternary International 133-134, 61-75.  https://doi.org/10.1016/j.quaint.2004.10.008
  26. Werner, D., 1977. The Biology of Diatoms. University of California Press, 498 p.
  27. Yabe, H., Yasui, S., Urabe, A., Takahama N., 2004. Holocene paleoenvironmental changes inferred from the diatom records of the Echigo Plain, central Japan, Quaternary International 115-116, 117-130.  https://doi.org/10.1016/S1040-6182(03)00101-0
  28. Zalat, A., Vildary, S.S., 2005. Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes. Journal of Paleolimnology 34, 159-174.  https://doi.org/10.1007/s10933-005-1187-0