DOI QR코드

DOI QR Code

Changes of Time-Distance Accessibility by Year and Day in the Integrated Seoul Metropolitan Public Transportation Network

서울 대도시권 통합 대중 교통망에서 연도별 및 요일별 시간거리 접근도 변화

  • Park, Jong Soo (Department of Information Systems Engineering, Sungshin Women's University) ;
  • Lee, Keumsook (Department of Geography, Sungshin Women's University)
  • 박종수 (성신여자대학교 정보시스템공학과) ;
  • 이금숙 (성신여자대학교 지리학과)
  • Received : 2018.12.27
  • Published : 2018.12.31

Abstract

This study analyzes the effect of the changes in traffic environments such as transportation speeds on the time-distance accessibility for the public transportation passengers. To do this, we use passenger transaction databases of the Seoul metropolitan public transportation system: one week for each of the three years (2011, 2013, and 2015). These big data contain the information about time and space on the traffic trajectories of every passenger. In this study, the time-distances of links between subway stations and bus stops of the public transportation system at each time are calculated based on the actual travel time extracted from the traffic-card transaction database. The changes in the time-distance accessibility of the integrated transportation network from the experimental results can be summarized in two aspects. First, the accessibility tends to decline as the year goes by. This is because the transportation network becomes more complicated and then the average moving speed of the vehicles is lowered. Second, the accessibility tends to increase on the weekend in the analysis of accessibility changes by day. This tendency is because the bus speeds on bus routes on the weekend are faster than other days. In order to analyze the accessibility changes, we illustrate graphs of the vehicle speeds and the numbers of passengers by year and day.

본 연구의 목적은 시간이 경과하면서 통행속도와 같은 교통환경에 나타나는 변화가 대중교통이용자의 시간거리 접근성에 미치는 영향을 분석하는 것이다. 이를 위하여 서울대도시권 대중교통체계의 3개년(2011년, 2013년, 2015년)의 각각 1주일치 통행기록을 담은 교통카드 데이터를 활용한다. 교통카드빅데이터에는 대중교통이용자들의 통행궤적에 대한 시 공간 정보가 담겨 있다. 본 연구에서는 교통카드 자료의 통행시간을 토대로 각 시점의 대중교통체계를 구성하고 있는 지하철 역 및 버스 정류장들 사이의 링크들의 시간거리를 산출한다. 실험 결과로 얻어진 통합 교통망에서 접근도 변화는 두 가지 관점으로 요약할 수 있다. 첫째, 해가 지날수록 접근도는 떨어지는 경향이 있다. 교통망이 더 복잡해짐으로 차량의 이동 속도가 저하되기 때문이다. 둘째, 요일별 접근도 변화 분석에서 주말에 접근도가 높아지는 경향이 있다. 이것은 버스노선들 상의 버스 속도가 주말에 빨라지기 때문이다. 접근도 변화의 분석을 위해 연도별과 요일별 차량속도와 승객수를 그래프로 설명한다.

Keywords

References

  1. 김소연.이금숙, 2006, "시간거리 접근성 카토그램제작 및 접근성 공간구조 분석," 한국경제지리학회지 9(2), pp.149-166.
  2. 박종수.이금숙, 2015, "교통카드 빅데이터 기반의 서울 버스 교통망 시간 거리 접근성 산출," 한국경제지리학회지 18(4), pp.539-555.
  3. 박종수.이금숙, 2017, "서울 대도시권 대중교통체계의 통합 시간거리 접근성 산출 알고리즘 개발," 지역연구 33(1), pp.29-41. https://doi.org/10.22669/KRSA.2017.33.1.029
  4. 이금숙, 1998, "지하철 접근성 증가의 공간적 파급효과 산출모형 개발," 한국경제지리학회지 1(1), pp.137-149.
  5. 이금숙.김경민.송예나, 2010, "복합용도개발과 교통이 아파트가격에 미치는 영향," 한국경제지리학회지 13(4), pp.515-528.
  6. 이금숙.박종수.정미선, 2014, "수도권 광역철도망 확충에 따른 서울 대도시권 접근도 변화: 교통카드 빅데이터를 이용한 시간거리 산출 알고리즘 및 비고정성 교통망 접근도 산출 모형의 개발과 적용," 한국경제지리학회지 17(1), pp.98-113.
  7. 정미선.이금숙, 2015, "시간거리 변화에 따른 한국 도시간 통행흐름의 구조 변화: 고속버스와 철도 이용객을 중심으로," 대한지리학회지 50(5), pp.527-541.
  8. Boisjoly, G. and El-Geneidy, A., 2016, "Daily fluctuations in transit and job availability: a comparative assessment of time-sensitive accessibility measures," Journal of Transport Geography 52, pp.73-81. https://doi.org/10.1016/j.jtrangeo.2016.03.004
  9. Dumbliauskas, V., Grigonis, V. and Barauskas, A., 2017, "Application of Google-based data for travel time analysis: Kaunas city case study," PROMET-Traffic Transport 29(6), pp.613-621. https://doi.org/10.7307/ptt.v29i6.2369
  10. Farber, S., Morang, M.Z. and Widener, M. J., 2014, "Temporal variability in transit-based accessibility to supermarkets," Applied Geography 53, pp.149-159. https://doi.org/10.1016/j.apgeog.2014.06.012
  11. Farber, S. and Fu, L., 2017, "Dynamic public transit accessibility using travel time cubes: comparing the effects of infrastructure (dis) investments over time," Computers, Environment and Urban Systems 62, pp.30-40. https://doi.org/10.1016/j.compenvurbsys.2016.10.005
  12. Floyd, R. W., 1962, "Algorithm 97: Shortest path," Communications of the ACM 5, p.345.
  13. Fransen, K., Neutens, T., Farber, S., De Maeyer, P., Deruyter, G. and Witlox, F., 2015, "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography 48, pp.176-187. https://doi.org/10.1016/j.jtrangeo.2015.09.008
  14. Geurs, K. T. and van Wee, B., 2004, "Accessibility evaluation of land-use and transport strategies: review and research directions," Journal of Transport Geography 12, pp.127-140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
  15. Handy, S. L. and Niemeier, D. A., 1997, "Measuring accessibility: an exploration of issues and alternatives," Environment and Planning A 29(7), pp.1175-1194. https://doi.org/10.1068/a291175
  16. Hansen, W. G., 1959, "How Accessibility Shapes Land Use," Journal of the American Institute of Planners 25(2), pp.73-76. https://doi.org/10.1080/01944365908978307
  17. Lee, K. and Lee, H.-Y., 1998, "A New Algorithm for Graphtheoretic Nodal Accessibility Measurement," Geographical Analysis 30(1), pp.1-14. https://doi.org/10.1111/j.1538-4632.1998.tb00385.x
  18. Li, Q., Zhang, T., Wang, H. and Zeng, Z., 2011, "Dynamic accessibility mapping using f loating car data: a network-constrained density estimation approach," Journal of Transport Geography 19(3), pp.379-393. https://doi.org/10.1016/j.jtrangeo.2010.07.003
  19. Miller, P., de Barros, A. G., Kattan, L. and Wirasinghe, S. C., 2016, "Public Transportation and Sustainability: A Review," Journal of Civil Engineering 20(3), pp.1076-1083.
  20. Moller-Jensen, L., Kofie, R.Y. and Allotey, A.N., 2012, "Measuring accessibility and congestion in Accra," Norsk Geografisk Tidsskrift - Norwegian Journal of Geography 66(1), pp.52-60. https://doi.org/10.1080/00291951.2011.644322
  21. Moniruzzamana, M., Olarub, D. and Biermann, S., 2017, "Assessing the accessibility of activity centres and their prioritisation: a case study for Perth Metropolitan Area," Urban, Planning and Transport Research 5(1), pp.1-21. https://doi.org/10.1080/21650020.2017.1295817
  22. Moya-Gomez, B. and Garcia-Palomares, J. C., 2015, "Working with the daily variation in infrastructure performance. The cases of Madrid and Barcelona," European Transport Research Review 7(2), pp.1-13. https://doi.org/10.1007/s12544-014-0149-x
  23. Moya-Gomez, B. and Garcia-Palomares, J. C., 2017, "The daily dynamic potential accessibility by car in London on Wednesdays," Journal of Maps 13(1), pp.31-39. https://doi.org/10.1080/17445647.2017.1305301
  24. Paez, A., Scott, D. M. and Morency, C., 2012, "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography 25, pp.141-153. https://doi.org/10.1016/j.jtrangeo.2012.03.016
  25. Picornell, M., Ruiz, T., Lenormand, M., Ramasco, J., Dubernet, T. and Frias-Martinez, E., 2015, "Exploring the potential of phone call data to characterize the relationship between social network and travel behavior," Transportation 42, pp.647-668. https://doi.org/10.1007/s11116-015-9594-1
  26. van Lint, J., 2006, "Reliable real-time framework for short-Term freeway travel time prediction," Journal of Transportation Engineering 132(12), pp.921-932. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:12(921)
  27. Wang, F. and Xu, Y., 2011, "Estimating O-D travel time matrix by Google Maps API: implementation, advantages, and implications," Annals of GIS 17(4), pp.199-209. https://doi.org/10.1080/19475683.2011.625977
  28. Wu, Y.-H. and Miller, H. J., 2002, "Computational tools for measuring space-time accessibility within transportation network with dynamic flow," Journal of Transportation and Statistics 4 (2/3), pp.1-14.
  29. 수서역, 2018, https://map.naver.com/local/siteview.nhn?code=13479444&_ts=1543283127821.

Cited by

  1. 서울시 지하철 네트워크의 접근성과 공간적 형평성 vol.22, pp.4, 2019, https://doi.org/10.23841/egsk.2019.22.4.513
  2. Generalized maximal entropy argument for the gravity law in human mobility vol.132, pp.4, 2018, https://doi.org/10.1209/0295-5075/132/48001