DOI QR코드

DOI QR Code

SWAT모형을 이용한 RCP 기후변화 시나리오에 따른 고랭지농업유역의 최적관리기법 평가

Assessment of Climate Change Impact on Best Management Practices of Highland Agricultural Watershed under RCP Scenarios using SWAT

  • Jang, Sun-Sook (Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Kim, Seong-Joon (Department of Civil and Environmental System Engineering, Konkuk University)
  • 투고 : 2016.03.31
  • 심사 : 2018.07.05
  • 발행 : 2018.07.31

초록

The purpose of this study was to evaluate the reduction effect of non point source (NPS) pollution in Haean highland agricultural catchment ($62.8km^2$) for 13 BMP scenarios under RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios. Under the present climate condition, the BMP (best management practices) reduction efficiency of SS (suspended solid), T-N (total nitrogen), and T-P (total phosphorus) showed +25.7%, +4.2%, and +16.1% for VFS (vegetative filter strip), +0.1%, +15.6%, and +5.7% for FC (fertilizer control), and +6.3%, -2.9%, and +3.9% for RSM (rice straw mulching) respectively. In general, effective was the best for SS and T-P reductions, and the FC was the best for T-N reduction. The negative effect of T-N on RSM was induced by increase in infiltration and solute transport to baseflow. Under the future climate change scenarios, the SS, T-N, and T-P reduction efficiency showed the range of +1.9~+11.6%, -1.9~+0.2%, and +5.3~+11.9% respectively. The 3 BMPs (VFS, FC, and RSM) application in the future showed negative and little differences (-0.5~+1.6%) for SS and T-N reduction efficiencies while T-P reduction efficiency showed +0.3~+7.6% comparing with the baseline period. To achieve an increase in the reduction efficiency of future SS and T-N by +2~+10%, the combined application of more than two BMPs is necessary.

키워드

참고문헌

  1. Arabi M., J. R. Frankenberger, B. A. Engel, J. G. Arnold, 2007. Representation of agricultural conservation practices with SWAT. Hydrological Processes 22(16): 3042-3055. doi:10.1002/hyp.6890.
  2. Chiang, L. C., I. Chaubey, N. M. Hong, Y. P. Lin, and T. Huang, 2012. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture- dominated watershed. International journal of environmental research and public health 9(10): 3654-3684. https://doi.org/10.3390/ijerph9103654
  3. Chu, T. W., A. Shirmohammadi, H. Montas, L. Abbott, and A. Sadeghi, 2005. Watershed level BMP valuation with SWAT model. ASAE Annual International Meeting, ASAE paper No 052098, St Joseph, MI.
  4. Gitau, M., T. Veith, W. Gburek, 2004. Farm-level optimization of BMP placement for cost-effective pollution reduction. Transactions of the ASAE 47(6), 1923-1931. doi: 10.13031/2013.17805.
  5. Jang, S. S., 2016. Assessment of climate change impact on best management practices in highland agricultural district -for haean watershed of Yanggu by SWAT Modeling-. Master's thesis. Konkuk University (in Korean).
  6. Jang, S. S., S. R. Ahn, J. D. Choi, and S. J. Kim, 2015. Hourly SWAT watershed modeling for analyzing reduction effect of nonpoint source pollution discharge loads. Journal of the Korean Society of Agricultural Engineers 57(1): 89-97 (in Korean). doi:10.5389/KSAE.2015.57.1.089.
  7. Jang, S. S., and S. J. Kim, 2017. Assessment of climate change impact on highland agricultural watershed hydrologic cycle and water quality under RCP scenarios using SWAT. Journal of the Korean Society of Agricultural Engineers 59(3): 41-50 (in Korean). doi:10.5389/KSAE.2017.59.3.041.
  8. Jung, C. G., S. R. Ahn, S. J. Kim, H. J. Yang, H. J. Lee, and G. A. Park, 2013. HSPF and SWAT modelling for identifying runoff reduction effect of nonpoint source pollution by rice straw mulching on upland crops. Journal of the Korean Society of the Agricultural Engineers 55(2): 47-57 (in Korean). doi:10.5389/KSAE.2013.55.2.047.
  9. Kang, S. K., and J. Tenhunen, 2010. Complex terrain and ecological heterogeneity (TERRECO): Evaluating ecosystem services in production versus water quantity/ quality in mountainous landscapes. Korean Journal of Agricultural and Forest Meteorology 12(4): 307-316 (in Korean). doi:10.5532/KJAFM.2010.12.4.307.
  10. Lee, J. W., J. S. Eom, B. C. Kim, W. S. Jang, J. C. Ryu, H. W. Kang, K. S. Kim, and K. J. Lim, 2011. Water quality prediction at mandae watershed using SWAT and water quality improvement with vegetated filter strip. Journal of the Korean Society of Agricultural Engineers 53(1): 37-45 (in Korean). doi:10.5389/KSAE.2011.53.1.037.
  11. Lee, M. S., G. A. Park, M. J. Park, J. Y. Park, J. W. Lee, and S. J. Kim, 2010. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery. Journal of Environmental Sciences 22(6): 826-833 (in Korean). doi:10.1016/S1001-0742(09)60184-4.
  12. Liu, R., P. Zhang, X. Wang, Y. Chen, and Z. Shen, 2013. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agricultural water management 117: 9-18. doi:10.1016/j.agwat.2012.10.018.
  13. Narasimhan, B., P. M. Allen, R. Srinivasan, S. T. Bednarz, J. Arnold, and J. A. Dunbar, 2007. Streambank erosion and best management practice simulation using SWAT. Watershed management to meet water quality standards and TMDLS (Total Maximum Daily Load) Proceedings of the 10-14 March 2007, San Antonio, Texas.
  14. National Institute of Environmental Research (NIER), 2010. A Quantification study on the reduction effect of agricultural non-point source pollution in rural areas (1) (in Korean).
  15. Parajuli, P. B., K. R. Mankin, and P. L. Barnes, 2008. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agricultural water management 95(10): 1189-1200. doi:10.1016/j.agwat.2008.05.006.
  16. Park, H. K., 2006. Environmental damages and control measures by highland agriculture-atudy on system improvement. master's thesis. Kangwon National University (in Korean).
  17. Park, J. Y., C. G. Jung, I. K. Jung, J. W. Lee, H. J. Shin, and S. J. Kim, 2010. A Study on the reduction of non-point source pollution by applying best management practices using SWAT model. Korean life environment 32(2): 59-64 (in Korean).
  18. Park, Y. S., J. G. Kim, N. W. Kim, J. H. Park, W. S. Jang, J. D. Choi, and K. J. Lim, 2008. Improvement of sediment trapping efficiency module in SWAT using VFSMOD-W model. Journal of Korean Society on Water Quality 24(4): 473-479 (in Korean).
  19. Park, Y. S., and J. H. Kwon, 2014. Application and effectiveness analysis of SWAT filter strip in golji watershed. Korean Journal of Environmental Agriculture 33(1): 30-36 (in Korean). doi:10.5338/KJEA.2014.33.1.30.
  20. Seo, B., C. Bogner, P. Poppenborg, E. Martin, M. Hoffmeister, M. Jun, T. Koellner, B. Reineking, C. L. Shope, and J. Tenhunen, 2014. Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth System Science Data 6(2): 339-352 doi:10.5194/essd-6-339-2014.
  21. Shope, C. L., G. R. Maharjan, J. Tenhunen, B. Seo, K. Kim, J. Riley, S. Arnhold, T. Koellner, Y. Ok, and S. Peiffer, 2014. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology and Earth System Sciences 18(2): 539-557. doi:10.5194/hess-18-539-2014.
  22. Van Liew, M. W., S. Feng, and T. B. Pathak, 2012. Climate change impacts on streamflow, water quality, and best management practices for the shell and logan creek watersheds in Nebraska. International Journal of Agricultural and Biological Engineering 5(1): 13-34. doi:10.1061/(ASCE)0733-9496(2004)130:4(339).
  23. Zhen X. Y., S. L. Yu, J. Y. Lin, 2004. Optimal location and sizing of stormwater basins at watershed scale. Journal of Water Resources Planning and Management 130(4): 339-347. doi:10.1061/(ASCE)0733-9496(2004)130:4(339).