DOI QR코드

DOI QR Code

Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios

RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석

  • Bang, Jehong (Department of Rural Systems Engineering, Seoul National University) ;
  • Choi, Jin-Yong (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Lee, Sang-Hyun (Research Institute for Humanity and Nature)
  • Received : 2017.12.27
  • Accepted : 2018.06.14
  • Published : 2018.07.31

Abstract

The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

Keywords

References

  1. Abbas, S., and W. H. Keith, 2001. Interior-Point method for reservoir operation with stochastic inflows. Journal of Water Resources Planning and Management 126(1): 48-57. doi:10.1061/(ASCE)0733-9496(2001)127:1(48).
  2. Alvaro, C., K. Rehdanz, R. B. Betts, P. Falloon, A. Wiltshire, and R. S. J. Tol, 2010. Climate change impacts on global agriculture, Kiel institute for the world economy, Hindenburgufer 66, 24105 Kiel, Germany. doi:10.1007/s10584-013-0822-4.
  3. Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters 38(5): L05805. https://doi.org/10.1029/2010GL046270
  4. Bang, J., S. H. Lee, J. Y. Choi, and S. H. Lee, 2017. Evaluation of reservoir drought response capability considering precipitation of non-irrigation period using RCP scenario. Journal of the Korean Society of Agricultural Engineers 59(1): 31-43 (in Korean). doi:10.5389/KSAE.2017.59.1.031.
  5. Buras N., 1963. Conjunctive operation of dams and aquifers. Journal of the Hydraulics Division 89(6): 111-131. doi:10.1029/2010GL046270.
  6. Choi, Y. S., K. T. Kim, and J. H. Lee, 2008. Development of grid based distributed Rainfall-Runoff Model with finite volume method. Journal of Korea Water Resources Association 41(9): 895-905 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.9.895
  7. Daniel P. L., and J. D. Philp, 1975. An Evaluation of some linear decision rules in chance constrained Models for reservoir planning and operation. Water Resources Research 11(6): 777-782. doi:10.1029/WR011i006p00777.
  8. Hwang, J. S., D. I. Jeong, J. K. Lee, and Y. O. Kim, 2007. Application of monthly water balance models for the climate change impact assessment. Journal of Korea Water Resources Association 40(2): 147-158 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.2.147
  9. Jery R. S., F. S. Bola, and P. L. Daniel, 1984. Stochastic dynamic programming models for reservoir operation optimization. Water Resources Research 20(11): 1499-1505. doi:10.1029/WR020i011p01499.
  10. Kim, H. Y., and S. W. Park, 1986. An Evaluation of parameter variations for a linear reservoir (TANK) model with watershed characteristics. Journal of the Korean Society of Agricultural Engineers 28(2): 42-52 (in Korean).
  11. Kim, H. Y., and S. W. Park, 1988. Simulating daily inflow and release rates for irrigation reservoirs (1) -modeling inflow rates by a linear reservoir model. Journal of the Korean Society of Agricultural Engineers 30(1): 50-62 (in Korean).
  12. Kim, C. G., and N. W. Kim, 2012. Comparison of natural flow estimates for the Han River basin esing TANK and SWAT models. Journal of Korea Water Resources Association 45(3): 301-316 (in Korean). doi:10.3741/JKWRA. 2012.45.3.301.
  13. Korea Meteorological Administration (KMA), 2012. Web System Tutorials for Climate Change Scenario (in Korean).
  14. Lee, G. M., and J. E. Yi, 1997. Large-Scale multi- reservoirs system analysis for water budget evaluation. Journal of Korea Water Resources Association 30(6): 629-639 (in Korean).
  15. Lee, S. H., S. H. Yoo, N. Y. Park, and J. Y. Choi, 2013. An Analysis of environmental water release patterns considering operation rules in enlarged agricultural reservoirs. Journal of the Korean Society of Agricultural Engineers 55(3): 51-62 (in Korean). doi:10.5389/KSAE.2013.55.3.051.
  16. Leonard, B., and W. W-G. Yeh, 1974. Optimization of real time operation of a multiple-reservoir system. Water Resources Research 10(6): 1107-1112. doi:10.1029/WR010i006p01107.
  17. Little, J. D. C., 1955. The Use of storage water in a hydroelectric system. Journal of the Operation Research Society of America 3(2): 187-197. doi:10.1287/opre.3.2.187.
  18. Mahdi M. J., O. B. Haddad, B. W. Karney, and M. A. Marino, 2007. Reservoir operation in assigning optimal multi-crop irrigation areas. Agricultural Water Management 90: 149-159. doi:10.1016/j.agwat.2007.02.013.
  19. MAFRA, 1998. Code structure for agricultural infrastructure design standards, Seoul: Korea Rural Community Corporation (in Korean).
  20. MAFRA, 2014. Statistical yearbook of land and water development for agriculture, Seoul: Korea Rural Community Corporation (in Korean).
  21. Nam, W. H., J. Y. Choi, E. M. Hong, and J. T. Kim, 2013. Assessment of irrigation efficiencies using smarter water management. Journal of the Korean Society of Agricultural Engineers 55(4): 45-53 (in Korean). doi:10.5389/KSAE.2013.55.4.045.
  22. Nam, W. H., E. M. Hong, and J. Y. Choi, 2014a. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23 (in Korean). doi:10.5389/KSAE.2014.56.2.011.
  23. Nam, W. H., E. M. Hong, M. W. Jang, and J. Y. Choi, 2014b. Projection of consumptive use and irrigation water for major upland crops using soil moisture model under climate change. Journal of the Korean Society of Agricultural Engineers 56(5): 77-87 (in Korean). doi:10.5389/KSAE.2014.56.5.077.
  24. Park, N. Y., J. Y. Choi, S. H. Yoo, and S. H. Lee, 2013. Assessment of anti-drought capacity for agricultural reservoirs using RCP scenarios. Journal of the Korean Society of Agricultural Engineers 55(3): 13-24. doi:10. 5389/KSAE.2013.55.3.013. https://doi.org/10.5389/KSAE.2013.55.3.013
  25. Park, N. Y., 2014. Analysis of drought response ability for agricultural reservoirs using GCM ensembles of RCP scenarios, Seoul National University Press (in Korean).
  26. Shin, H. S., D. K. Kang, and S. D. Kim, 2007. Analysis of the effect of water budget elements on flow duration characteristics using SWAT-Nak Dong. Journal of Korea Water Resources Association 40(3): 251-263 (in Korean). doi:10.3741/JKWRA.2007.40.3.251.
  27. Slobodan P. S., and M. A. Marino, 1980. Reliability programming in reservoir management 1. Single multipurpose reservoir. Water Resources Research 16(5): 844-848. doi:10.1029/WR016i005p00844.
  28. Sugawara, M., 1972. Method of rainfall-runoff analysis, Kyouritsu Shuppan Co., Ltd., Tokyo, Japan (in Japanese).
  29. Thanos T., and W. W-G. Yeh, 1987. Use of stochastic dynamic programming for reservoir management. Water Resources Research 23(6): 983-996. doi:10.1029/WR023i006p00983.
  30. Yoo, S. H., S. H. Lee, J. Y. Choi, and T. S. Park, 2012. Optimizing rules for releasing environmental water in enlarged agricultural reservoirs. Journal of the Korean Society of Agricultural Engineers 54(5): 17-24 (in Korean). doi:10.5389/KSAE.2012.54.5.017.
  31. Yoon, Y. N., and T. G. Kim, 1993. A Water budget analysis with Inter-basin water transfer taken spatially into considerations. Journal of the Korean Society of Civil Engineers 13(1): 89-96 (in Korean).