DOI QR코드

DOI QR Code

DETERMINANTAL EXPRESSION OF THE GENERAL SOLUTION TO A RESTRICTED SYSTEM OF QUATERNION MATRIX EQUATIONS WITH APPLICATIONS

  • Received : 2017.09.03
  • Accepted : 2018.04.03
  • Published : 2018.07.31

Abstract

In this paper, we mainly consider the determinantal representations of the unique solution and the general solution to the restricted system of quaternion matrix equations $$\{{A_1X=C_1\\XB_2=C_2,}\;{{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_r(X){\supseteq}S_1$$, respectively. As an application, we show the determinantal representations of the general solution to the restricted quaternion matrix equation $$AX+Y B=E,\;{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_(X){\supseteq}S_1,\;{\mathcal{R}}_l(Y){\subseteq}T_2,\;{\mathcal{N}}_l (Y){\supseteq}S_2$$. The findings of this paper extend some known results in the literature.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Shan Dong University

References

  1. S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, International Series of Monographs on Physics, 88, The Clarendon Press, Oxford University Press, New York, 1995.
  2. H. Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57-65. https://doi.org/10.1007/BF03024312
  3. Z. Bai, S. Zhang, S. Sun, and C. Yin, Monotone iterative method for a class of fractional differential equations, Electronic Journal of Differential Equations 2016 (2016), 1-8.
  4. A. Ben-Israel, A Cramer rule for least-norm solutions of consistent linear equations, Linear Algebra Appl. 43 (1982), 223-226. https://doi.org/10.1016/0024-3795(82)90255-5
  5. J. Cai and G. Chen, On determinantal representation for the generalized inverse $A^{(2)}_{T,S}$ and its applications, Numer. Linear Algebra Appl. 14 (2007), no. 3, 169-182. https://doi.org/10.1002/nla.513
  6. L. X. Chen, Definition of determinant and Cramer solutions over the quaternion field, Acta Math. Sinica (N.S.) 7 (1991), no. 2, 171-180. https://doi.org/10.1007/BF02633946
  7. L. X. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A 34 (1991), no. 5, 528-540.
  8. Y. Chen, A Cramer rule for solution of the general restricted linear equation, Linear Multilinear Algebra 40 (1995), 61-68. https://doi.org/10.1080/03081089508818420
  9. N. Cohen and S. De Leo, The quaternionic determinant, Electron. J. Linear Algebra 7 (2000), 100-111.
  10. J. H. Conway and D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A K Peters, Ltd., Natick, MA, 2003.
  11. F. J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972), 289-302.
  12. I. M. Gelfand and V. S. Retakh, A determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25 (1991), no. 2, 91-102; translated from Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 13-25, 96. https://doi.org/10.1007/BF01079588
  13. I. M. Gelfand and V. S. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), no. 4, 231-246 (1993); translated from Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, 1-20, 96. https://doi.org/10.1007/BF01075044
  14. S. Gupta, Linear quaternion equations with application to spacecraft attitude propagation, IEEE Proceedings of Aerospace Conference 1 (1998), 69-76.
  15. W. R. Hamilton, On quaternions or on a new system of imaginaries in algebra, Philos. Mag. 25 (1844), no. 3, 489-495.
  16. T. Jiang, X. Cheng, and S. Ling, An algebraic relation between consimilarity and similarity of quaternion matrices and applications, J. Appl. Math. 2014 (2014), Article ID 795203, 5 pages.
  17. T. Jiang, Z. Jiang, and S. Ling, An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics, Appl. Math. Comput. 249 (2014), 222-228.
  18. J. B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, Princeton, NJ, 1999.
  19. I. Kyrchei, Cramer's rule for quaternionic system of linear equations, J. Math. Sci. (N.Y.) 155 (2008), no. 6, 839-858; translated from Fundam. Prikl. Mat. 13 (2007), no. 4, 67-94. https://doi.org/10.1007/s10958-008-9245-6
  20. I. Kyrchei, Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer's rules, Linear Multilinear Algebra 59 (2011), no. 4, 413-431. https://doi.org/10.1080/03081081003586860
  21. I. Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra Appl. 438 (2013), no. 1, 136-152. https://doi.org/10.1016/j.laa.2012.07.049
  22. I. Kyrchei, Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations, Appl. Math. Comput. 238 (2014), 193-207.
  23. I. Kyrchei, Explicit determinantal representation formulas of W-weighted Drazin inverse solutions of some matrix equations over the quaternion skew field, Math. Probl. Eng. (2016), Art. ID 8673809, 13 pp.
  24. I. Kyrchei, Determinantal representations of solutions to systems of quaternion matrix equations, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, 28:23.
  25. G. Li and M. Chen, On uniqueness of strong solution of stochastic systems, Abstr. Appl. Anal. (2014), Art. ID 890925, 6 pp.
  26. H. Li and F. Sun, Existence of solutions for integral boundary value problems of secondorder ordinary differential equations, Bound. Value Probl. 2012 (2012), 147, 7 pp. https://doi.org/10.1186/1687-2770-2012-147
  27. H. Li and J. Sun, Positive solutions of superlinear semipositone nonlinear boundary value problems, Comput. Math. Appl. 61 (2011), no. 9, 2806-2815. https://doi.org/10.1016/j.camwa.2011.03.051
  28. S. Ling, X. Cheng, and T. Jiang, An algorithm for coneigenvalues and coneigenvectors of quaternion matrices, Adv. Appl. Clifford Algebr. 25 (2015), no. 2, 377-384. https://doi.org/10.1007/s00006-014-0496-7
  29. H. Ma and T. Hou, A separation theorem for stochastic singular linear quadratic control problem with partial information, Acta Math. Appl. Sin. Engl. Ser. 29 (2013), no. 2, 303-314. https://doi.org/10.1007/s10255-013-0218-2
  30. S. K. Mitra, Common solutions to a pair of linear matrix equations $A_1XB_1 = C_1$, $A_2XB_2 = C_2$, Proc. Cambridge Philos. Soc. 74 (1973), 213-216. https://doi.org/10.1017/S030500410004799X
  31. G. Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998), 106-223. https://doi.org/10.1090/S1088-4165-98-00011-9
  32. A. Rehman, Q. W. Wang, I. Ali, M. Akram, and M. O. Ahmad, A constraint system of generalized Sylvester quaternion matrix equations, Adv. Appl. Clifford Algebr. 27 (2017), no. 4, 3183-3196. https://doi.org/10.1007/s00006-017-0803-1
  33. S. M. Robinson, A short proof of Cramer's rule, Math. Mag. 43 (1970), no. 2, 94-95. https://doi.org/10.1080/0025570X.1970.11976018
  34. S.J. Sangwine, Fourier transforms of colour images using quaternion or hyper-complex number, Electron. Lett. 32 (1996), no. 21, 1979-1980. https://doi.org/10.1049/el:19961331
  35. S. J. Sangwine and T. A. Ell, Colour image filters based on hypercomplex convolution, IEEE Proc. Vis., Image Signal Process. 147 (2000), no. 2, 89-93. https://doi.org/10.1049/ip-vis:20000211
  36. K. Shoemake, Animating rotation with quaternion curves, Comput. Graph. 19 (1985), no. 3, 245-254. https://doi.org/10.1145/325165.325242
  37. G.-J. Song, Determinantal representation of the generalized inverses over the quaternion skew field with applications, Appl. Math. Comput. 219 (2012), no. 2, 656-667. https://doi.org/10.1016/j.amc.2012.06.056
  38. G.-J. Song, Characterization of the W-weighted Drazin inverse over the quaternion skew field with applications, Electron. J. Linear Algebra 26 (2013), 1-14.
  39. G.-J. Song and Q.-W. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput. 218 (2011), no. 7, 3110-3121. https://doi.org/10.1016/j.amc.2011.08.038
  40. G.-J. Song, Q.-W. Wang, and H.-X. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field, Comput. Math. Appl. 61 (2011), no. 6, 1576-1589. https://doi.org/10.1016/j.camwa.2011.01.026
  41. G. C. Verghese, A "Cramer rule" for the least-norm, least-squared-error solution of inconsistent linear equations, Linear Algebra Appl. 48 (1982), 315-316. https://doi.org/10.1016/0024-3795(82)90117-3
  42. G. R. Wang, A Cramer rule for minimum-norm (T) least-squares (S) solution of inconsistent linear equations, Linear Algebra Appl. 74 (1986), 213-218. https://doi.org/10.1016/0024-3795(86)90123-0
  43. G. R. Wang, A Cramer rule for finding the solution of a class of singular equations, Linear Algebra Appl. 116 (1989), 27-34. https://doi.org/10.1016/0024-3795(89)90395-9
  44. G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Science, Beijing, 2004,
  45. Q.-W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 384 (2004), 43-54. https://doi.org/10.1016/j.laa.2003.12.039
  46. Y. Yu and Y. Wei, Determinantal representation of the generalized inverse $A^{(2)}_{T,S}$ over integral domains and its applications, Linear Multilinear Algebra 57 (2009), no. 6, 547- 559. https://doi.org/10.1080/03081080701871665
  47. S. Yuan, Q. Wang, Y. Yu, and Y. Tian, On Hermitian solutions of the split quaternion matrix equation AXB + CXD = E, Adv. Appl. Clifford Algebr. 27 (2017), no. 4, 3235-3252. https://doi.org/10.1007/s00006-017-0806-y