Acknowledgement
Supported by : National Natural Science Foundation of China, Shan Dong University
References
- S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, International Series of Monographs on Physics, 88, The Clarendon Press, Oxford University Press, New York, 1995.
- H. Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57-65. https://doi.org/10.1007/BF03024312
- Z. Bai, S. Zhang, S. Sun, and C. Yin, Monotone iterative method for a class of fractional differential equations, Electronic Journal of Differential Equations 2016 (2016), 1-8.
- A. Ben-Israel, A Cramer rule for least-norm solutions of consistent linear equations, Linear Algebra Appl. 43 (1982), 223-226. https://doi.org/10.1016/0024-3795(82)90255-5
-
J. Cai and G. Chen, On determinantal representation for the generalized inverse
$A^{(2)}_{T,S}$ and its applications, Numer. Linear Algebra Appl. 14 (2007), no. 3, 169-182. https://doi.org/10.1002/nla.513 - L. X. Chen, Definition of determinant and Cramer solutions over the quaternion field, Acta Math. Sinica (N.S.) 7 (1991), no. 2, 171-180. https://doi.org/10.1007/BF02633946
- L. X. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A 34 (1991), no. 5, 528-540.
- Y. Chen, A Cramer rule for solution of the general restricted linear equation, Linear Multilinear Algebra 40 (1995), 61-68. https://doi.org/10.1080/03081089508818420
- N. Cohen and S. De Leo, The quaternionic determinant, Electron. J. Linear Algebra 7 (2000), 100-111.
- J. H. Conway and D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A K Peters, Ltd., Natick, MA, 2003.
- F. J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972), 289-302.
- I. M. Gelfand and V. S. Retakh, A determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25 (1991), no. 2, 91-102; translated from Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 13-25, 96. https://doi.org/10.1007/BF01079588
- I. M. Gelfand and V. S. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), no. 4, 231-246 (1993); translated from Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, 1-20, 96. https://doi.org/10.1007/BF01075044
- S. Gupta, Linear quaternion equations with application to spacecraft attitude propagation, IEEE Proceedings of Aerospace Conference 1 (1998), 69-76.
- W. R. Hamilton, On quaternions or on a new system of imaginaries in algebra, Philos. Mag. 25 (1844), no. 3, 489-495.
- T. Jiang, X. Cheng, and S. Ling, An algebraic relation between consimilarity and similarity of quaternion matrices and applications, J. Appl. Math. 2014 (2014), Article ID 795203, 5 pages.
- T. Jiang, Z. Jiang, and S. Ling, An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics, Appl. Math. Comput. 249 (2014), 222-228.
- J. B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, Princeton, NJ, 1999.
- I. Kyrchei, Cramer's rule for quaternionic system of linear equations, J. Math. Sci. (N.Y.) 155 (2008), no. 6, 839-858; translated from Fundam. Prikl. Mat. 13 (2007), no. 4, 67-94. https://doi.org/10.1007/s10958-008-9245-6
- I. Kyrchei, Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer's rules, Linear Multilinear Algebra 59 (2011), no. 4, 413-431. https://doi.org/10.1080/03081081003586860
- I. Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra Appl. 438 (2013), no. 1, 136-152. https://doi.org/10.1016/j.laa.2012.07.049
- I. Kyrchei, Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations, Appl. Math. Comput. 238 (2014), 193-207.
- I. Kyrchei, Explicit determinantal representation formulas of W-weighted Drazin inverse solutions of some matrix equations over the quaternion skew field, Math. Probl. Eng. (2016), Art. ID 8673809, 13 pp.
- I. Kyrchei, Determinantal representations of solutions to systems of quaternion matrix equations, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, 28:23.
- G. Li and M. Chen, On uniqueness of strong solution of stochastic systems, Abstr. Appl. Anal. (2014), Art. ID 890925, 6 pp.
- H. Li and F. Sun, Existence of solutions for integral boundary value problems of secondorder ordinary differential equations, Bound. Value Probl. 2012 (2012), 147, 7 pp. https://doi.org/10.1186/1687-2770-2012-147
- H. Li and J. Sun, Positive solutions of superlinear semipositone nonlinear boundary value problems, Comput. Math. Appl. 61 (2011), no. 9, 2806-2815. https://doi.org/10.1016/j.camwa.2011.03.051
- S. Ling, X. Cheng, and T. Jiang, An algorithm for coneigenvalues and coneigenvectors of quaternion matrices, Adv. Appl. Clifford Algebr. 25 (2015), no. 2, 377-384. https://doi.org/10.1007/s00006-014-0496-7
- H. Ma and T. Hou, A separation theorem for stochastic singular linear quadratic control problem with partial information, Acta Math. Appl. Sin. Engl. Ser. 29 (2013), no. 2, 303-314. https://doi.org/10.1007/s10255-013-0218-2
-
S. K. Mitra, Common solutions to a pair of linear matrix equations
$A_1XB_1 = C_1$ ,$A_2XB_2 = C_2$ , Proc. Cambridge Philos. Soc. 74 (1973), 213-216. https://doi.org/10.1017/S030500410004799X - G. Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998), 106-223. https://doi.org/10.1090/S1088-4165-98-00011-9
- A. Rehman, Q. W. Wang, I. Ali, M. Akram, and M. O. Ahmad, A constraint system of generalized Sylvester quaternion matrix equations, Adv. Appl. Clifford Algebr. 27 (2017), no. 4, 3183-3196. https://doi.org/10.1007/s00006-017-0803-1
- S. M. Robinson, A short proof of Cramer's rule, Math. Mag. 43 (1970), no. 2, 94-95. https://doi.org/10.1080/0025570X.1970.11976018
- S.J. Sangwine, Fourier transforms of colour images using quaternion or hyper-complex number, Electron. Lett. 32 (1996), no. 21, 1979-1980. https://doi.org/10.1049/el:19961331
- S. J. Sangwine and T. A. Ell, Colour image filters based on hypercomplex convolution, IEEE Proc. Vis., Image Signal Process. 147 (2000), no. 2, 89-93. https://doi.org/10.1049/ip-vis:20000211
- K. Shoemake, Animating rotation with quaternion curves, Comput. Graph. 19 (1985), no. 3, 245-254. https://doi.org/10.1145/325165.325242
- G.-J. Song, Determinantal representation of the generalized inverses over the quaternion skew field with applications, Appl. Math. Comput. 219 (2012), no. 2, 656-667. https://doi.org/10.1016/j.amc.2012.06.056
- G.-J. Song, Characterization of the W-weighted Drazin inverse over the quaternion skew field with applications, Electron. J. Linear Algebra 26 (2013), 1-14.
- G.-J. Song and Q.-W. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput. 218 (2011), no. 7, 3110-3121. https://doi.org/10.1016/j.amc.2011.08.038
- G.-J. Song, Q.-W. Wang, and H.-X. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field, Comput. Math. Appl. 61 (2011), no. 6, 1576-1589. https://doi.org/10.1016/j.camwa.2011.01.026
- G. C. Verghese, A "Cramer rule" for the least-norm, least-squared-error solution of inconsistent linear equations, Linear Algebra Appl. 48 (1982), 315-316. https://doi.org/10.1016/0024-3795(82)90117-3
- G. R. Wang, A Cramer rule for minimum-norm (T) least-squares (S) solution of inconsistent linear equations, Linear Algebra Appl. 74 (1986), 213-218. https://doi.org/10.1016/0024-3795(86)90123-0
- G. R. Wang, A Cramer rule for finding the solution of a class of singular equations, Linear Algebra Appl. 116 (1989), 27-34. https://doi.org/10.1016/0024-3795(89)90395-9
- G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Science, Beijing, 2004,
- Q.-W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 384 (2004), 43-54. https://doi.org/10.1016/j.laa.2003.12.039
-
Y. Yu and Y. Wei, Determinantal representation of the generalized inverse
$A^{(2)}_{T,S}$ over integral domains and its applications, Linear Multilinear Algebra 57 (2009), no. 6, 547- 559. https://doi.org/10.1080/03081080701871665 - S. Yuan, Q. Wang, Y. Yu, and Y. Tian, On Hermitian solutions of the split quaternion matrix equation AXB + CXD = E, Adv. Appl. Clifford Algebr. 27 (2017), no. 4, 3235-3252. https://doi.org/10.1007/s00006-017-0806-y