DOI QR코드

DOI QR Code

Pr2NiO4+δ for Cathode in Protonic Ceramic Fuel Cells

  • An, Hyegsoon (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Shin, Dongwook (Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Ji, Ho-Il (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology)
  • 투고 : 2018.04.13
  • 심사 : 2018.05.29
  • 발행 : 2018.07.31

초록

To improve the polarization property of cathodes, which is the main factor limiting the performance of protonic ceramic fuel cells (PCFCs), $K_2NiF_4-type$ $Pr_2NiO_{4+{\delta}}$, which is expected to exhibit a triple conducting property (proton, oxygen ion, and hole conductions) was applied to PCFCs and its properties were investigated. Low-temperature microwave heat-treatment was used to achieve both sufficient interface adhesion between the electrolyte and the cathode layers and suppression of the secondary phase formation due to migration of elements such as barium and cerium. Through this fabrication method, a high performance of $0.82W{\cdot}cm^{-2}$ and low ohmic resistance of $0.06{\Omega}{\cdot}cm^2$ were obtained in an $Ni-BaCe_{0.55}Zr_{0.3}Y_{0.15}O_{3-{\delta}}$ | $BaCe_{0.55}Zr_{0.3}Y_{0.15}O_{3-{\delta}}$ | $Pr_2NiO_{4+{\delta}}$ single cell at $650^{\circ}C$. This result verifies that the $K_2NiF_{4+{\delta}}-type$ cathode shows good chemical compatibility which, in turn, will make it a potent candidate as a PCFC cathode.

키워드

참고문헌

  1. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  2. A. Grimaud, F. Mauby, J. M. Bassat, S. Fourcade, M. Marrony, and J. C. Grenier, "Hydration and Transport Properties of the $Pr_{2-x}Sr_xNiO_{4+{\delta}}$ Compounds as H+-SOFC Cathodes," J. Mater. Chem., 22 [31] 16017 (2012). https://doi.org/10.1039/c2jm31812a
  3. R. R. Peng, T. Z. Wu, W. Liu, X. Q. Liu, and G. Y. Meng, "Cathode Processes and Materials for Solid Oxide Fuel Cells with Proton Conductors as Electrolytes," J. Mater. Chem., 20 [30] 6218-25 (2010). https://doi.org/10.1039/c0jm00350f
  4. P. Batocchi, F. Mauvy, S. Fourcade, and M. Parco, "Electrical and Electrochemical Properties of Architectured Electrodes based on Perovskite and $A_2MO_4$-Type Oxides for Protonic Ceramic Fuel Cell," Electrochim. Acta, 145 1-10 (2014). https://doi.org/10.1016/j.electacta.2014.07.001
  5. E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, and P. Stevens, "Oxygen Diffusion and Transport Properties in Non-Stoichiometric LnNiO Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). https://doi.org/10.1016/j.ssi.2005.06.033
  6. A. Grimaud, F. Mauvy, J. M. Bassat, S. Fourcade, L. Rocheron, M. Marrony, and J. C. Grenier, "Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as $H^+$ - SOFC Cathodes," J. Electrochem. Soc., 159 [6] B683-94 (2012). https://doi.org/10.1149/2.101205jes
  7. H. An, D. Shin, S. Choi, J. Lee, J. Son, B. Kim, H. Je, H. Lee, and K. Yoon, "$BaCeO_3-BaZrO_3$ Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs)," J. Korean Ceram. Soc., 51 [4] 271-77 (2014). https://doi.org/10.4191/kcers.2014.51.4.271
  8. V. A. Sadykov, E. M. Sadovskaya, E. Y. Pikalova, A. A. Kolchugin, E. A. Filonova, S. M. Pikalov, N. F. Eremeev, A. V. Ishchenko, A. I. Lukashevich, and J. M. Bassat, "Transport Features in Layered Nickelates: Correlation between Structure, Oxygen Diffusion, Electrical and Electrochemical Properties," Ionics, 24 [4] 1181-93 (2018). https://doi.org/10.1007/s11581-017-2279-3
  9. E. Dogdibegovic, Q. S. Cai, N. S. Alabri, W. B. Guan, and X. D. Zhou, "Activity and Stability of $(Pr_{1-x}Nd_x)_2NiO_4$ as Cathodes for Solid Oxide Fuel Cells III. Crystal Structure, Electrical Properties, and Microstructural Analysis," J. Electrochem. Soc., 164 [2] F99-106 (2017). https://doi.org/10.1149/2.0581702jes
  10. X.-D. Zhou, J. W. Templeton, Z. Nie, H. Chen, J. W. Stevenson, and L. R. Pederson, "Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: V. High Performance and Stable $Pr_2NiO_4$ as the Cathode for Solid Oxide Fuel Cells," Electrochim. Acta, 71 44-9 (2012). https://doi.org/10.1016/j.electacta.2012.03.067
  11. P. Odier, C. Allancon, and J. M. Bassat, "Oxygen Exchange in $Pr_2NiO_{4+{\delta}}$ at High Temperature and Direct Formation of $Pr_4Ni_3O_{10-x}$," J. Solid State Chem., 153 [2] 381-85 (2000). https://doi.org/10.1006/jssc.2000.8786
  12. L. Malavasi, C. Tealdi, C. Ritter, V. Pomjakushin, F. Gozzo, and Y. Diaz-Fernandez, "Combined Neutron and Synchrotron X-ray Diffraction Investigation of the $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-{\delta}}(0.1{\leq}x{\leq}0.4)$ Proton Conductors," Chem. Mater., 23 [5] 1323-30 (2011). https://doi.org/10.1021/cm1034326
  13. M. A. Laguna-Bercero, H. Monzon, A. Larrea, and V. M. Oreara, "Improved Stability of Reversible Solid Oxide Cells with a Nickelate-Based Oxygen Electrode," J. Mater. Chem. A, 4 [4] 1446-53 (2016). https://doi.org/10.1039/C5TA08531D
  14. G. Taillades, J. Dailly, M. Taillades-Jacquin, F. Mauvy, A. Essouhmi, M. Marrony, C. Lalanne, S. Fourcade, D. J. Jones, J. C. Grenier, and J. Roziere, "Intermediate Temperature Anode-Supported Fuel Cell Based on $ BaCe_{0.9}Y_{0.1}O_3$ Electrolyte with Novel $Pr_2NiO_4$ Cathode," Fuel Cells, 10 [1] 166-73 (2010). https://doi.org/10.1002/fuce.200900033
  15. R. Chiba, H. Taguchi, T. komatsu, H. Orui, K. Nozawa, and H. Arai, "High Temperature Properties of $Ce_{1-x}Pr_xO_{2-{\delta}}$ as an Active Layer Material for SOFC Cathodes," Solid State Ionics, 197 [1] 42-8 (2011). https://doi.org/10.1016/j.ssi.2011.03.022
  16. Y. Chung, Y. Kwon, and S. Byeon, "Synthesis, Structural and Electrical Characterizations of $Pr_{2-x}Ba_xNiO_{4{\pm}{\delta}}$," Bull. Korean Chem. Soc., 16 [2] 120-25 (1995).
  17. H. Iwahara, "Oxide-Ionic and Protonic Conductors Based on Perovskite-Type Oxides and Their Possible Applications," Solid State Ionics, 52 [1-3] 99-104 (1992). https://doi.org/10.1016/0167-2738(92)90095-7
  18. K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  19. N. Nasani, D. Ramasamy, S. Mikhalev, A. V. Kovalevsky, and D. P. Fagg, "Fabrication and Electrochemical Performance of a Stable, Anode Supported Thin $BaCe_{0.4}Zr_{0.4}Y_{0.2}O_{3-{\delta}}$ Electrolyte Protonic Ceramic Fuel Cell," J. Power Sources, 278 582-89 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.124
  20. Y. G. Lyagaeva, D. A. Medvedev, A. K. Demin, P. Tsiakaras, and O. G. Reznitskikh, "Thermal Expansion of Materials in the Barium Cerate-Zirconate System," Phys. Solid State, 57 [2] 285-89 (2015). https://doi.org/10.1134/S1063783415020250

피인용 문헌

  1. Materials and nano-structural processes for use in solid oxide fuel cells: a review vol.57, pp.2, 2018, https://doi.org/10.1007/s43207-020-00022-3
  2. Ruddlesden-Popper perovskites in electrocatalysis vol.7, pp.10, 2018, https://doi.org/10.1039/d0mh00477d
  3. Perspectives on Cathodes for Protonic Ceramic Fuel Cells vol.11, pp.12, 2018, https://doi.org/10.3390/app11125363
  4. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells vol.894, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2021.162458