참고문헌
- E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
-
A. Grimaud, F. Mauby, J. M. Bassat, S. Fourcade, M. Marrony, and J. C. Grenier, "Hydration and Transport Properties of the
$Pr_{2-x}Sr_xNiO_{4+{\delta}}$ Compounds as H+-SOFC Cathodes," J. Mater. Chem., 22 [31] 16017 (2012). https://doi.org/10.1039/c2jm31812a - R. R. Peng, T. Z. Wu, W. Liu, X. Q. Liu, and G. Y. Meng, "Cathode Processes and Materials for Solid Oxide Fuel Cells with Proton Conductors as Electrolytes," J. Mater. Chem., 20 [30] 6218-25 (2010). https://doi.org/10.1039/c0jm00350f
-
P. Batocchi, F. Mauvy, S. Fourcade, and M. Parco, "Electrical and Electrochemical Properties of Architectured Electrodes based on Perovskite and
$A_2MO_4$ -Type Oxides for Protonic Ceramic Fuel Cell," Electrochim. Acta, 145 1-10 (2014). https://doi.org/10.1016/j.electacta.2014.07.001 - E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, and P. Stevens, "Oxygen Diffusion and Transport Properties in Non-Stoichiometric LnNiO Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). https://doi.org/10.1016/j.ssi.2005.06.033
-
A. Grimaud, F. Mauvy, J. M. Bassat, S. Fourcade, L. Rocheron, M. Marrony, and J. C. Grenier, "Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as
$H^+$ - SOFC Cathodes," J. Electrochem. Soc., 159 [6] B683-94 (2012). https://doi.org/10.1149/2.101205jes -
H. An, D. Shin, S. Choi, J. Lee, J. Son, B. Kim, H. Je, H. Lee, and K. Yoon, "
$BaCeO_3-BaZrO_3$ Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs)," J. Korean Ceram. Soc., 51 [4] 271-77 (2014). https://doi.org/10.4191/kcers.2014.51.4.271 - V. A. Sadykov, E. M. Sadovskaya, E. Y. Pikalova, A. A. Kolchugin, E. A. Filonova, S. M. Pikalov, N. F. Eremeev, A. V. Ishchenko, A. I. Lukashevich, and J. M. Bassat, "Transport Features in Layered Nickelates: Correlation between Structure, Oxygen Diffusion, Electrical and Electrochemical Properties," Ionics, 24 [4] 1181-93 (2018). https://doi.org/10.1007/s11581-017-2279-3
-
E. Dogdibegovic, Q. S. Cai, N. S. Alabri, W. B. Guan, and X. D. Zhou, "Activity and Stability of
$(Pr_{1-x}Nd_x)_2NiO_4$ as Cathodes for Solid Oxide Fuel Cells III. Crystal Structure, Electrical Properties, and Microstructural Analysis," J. Electrochem. Soc., 164 [2] F99-106 (2017). https://doi.org/10.1149/2.0581702jes -
X.-D. Zhou, J. W. Templeton, Z. Nie, H. Chen, J. W. Stevenson, and L. R. Pederson, "Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: V. High Performance and Stable
$Pr_2NiO_4$ as the Cathode for Solid Oxide Fuel Cells," Electrochim. Acta, 71 44-9 (2012). https://doi.org/10.1016/j.electacta.2012.03.067 -
P. Odier, C. Allancon, and J. M. Bassat, "Oxygen Exchange in
$Pr_2NiO_{4+{\delta}}$ at High Temperature and Direct Formation of$Pr_4Ni_3O_{10-x}$ ," J. Solid State Chem., 153 [2] 381-85 (2000). https://doi.org/10.1006/jssc.2000.8786 -
L. Malavasi, C. Tealdi, C. Ritter, V. Pomjakushin, F. Gozzo, and Y. Diaz-Fernandez, "Combined Neutron and Synchrotron X-ray Diffraction Investigation of the
$BaCe_{0.85-x}Zr_xY_{0.15}O_{3-{\delta}}(0.1{\leq}x{\leq}0.4)$ Proton Conductors," Chem. Mater., 23 [5] 1323-30 (2011). https://doi.org/10.1021/cm1034326 - M. A. Laguna-Bercero, H. Monzon, A. Larrea, and V. M. Oreara, "Improved Stability of Reversible Solid Oxide Cells with a Nickelate-Based Oxygen Electrode," J. Mater. Chem. A, 4 [4] 1446-53 (2016). https://doi.org/10.1039/C5TA08531D
-
G. Taillades, J. Dailly, M. Taillades-Jacquin, F. Mauvy, A. Essouhmi, M. Marrony, C. Lalanne, S. Fourcade, D. J. Jones, J. C. Grenier, and J. Roziere, "Intermediate Temperature Anode-Supported Fuel Cell Based on
$ BaCe_{0.9}Y_{0.1}O_3$ Electrolyte with Novel$Pr_2NiO_4$ Cathode," Fuel Cells, 10 [1] 166-73 (2010). https://doi.org/10.1002/fuce.200900033 -
R. Chiba, H. Taguchi, T. komatsu, H. Orui, K. Nozawa, and H. Arai, "High Temperature Properties of
$Ce_{1-x}Pr_xO_{2-{\delta}}$ as an Active Layer Material for SOFC Cathodes," Solid State Ionics, 197 [1] 42-8 (2011). https://doi.org/10.1016/j.ssi.2011.03.022 -
Y. Chung, Y. Kwon, and S. Byeon, "Synthesis, Structural and Electrical Characterizations of
$Pr_{2-x}Ba_xNiO_{4{\pm}{\delta}}$ ," Bull. Korean Chem. Soc., 16 [2] 120-25 (1995). - H. Iwahara, "Oxide-Ionic and Protonic Conductors Based on Perovskite-Type Oxides and Their Possible Applications," Solid State Ionics, 52 [1-3] 99-104 (1992). https://doi.org/10.1016/0167-2738(92)90095-7
- K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
-
N. Nasani, D. Ramasamy, S. Mikhalev, A. V. Kovalevsky, and D. P. Fagg, "Fabrication and Electrochemical Performance of a Stable, Anode Supported Thin
$BaCe_{0.4}Zr_{0.4}Y_{0.2}O_{3-{\delta}}$ Electrolyte Protonic Ceramic Fuel Cell," J. Power Sources, 278 582-89 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.124 - Y. G. Lyagaeva, D. A. Medvedev, A. K. Demin, P. Tsiakaras, and O. G. Reznitskikh, "Thermal Expansion of Materials in the Barium Cerate-Zirconate System," Phys. Solid State, 57 [2] 285-89 (2015). https://doi.org/10.1134/S1063783415020250
피인용 문헌
- Materials and nano-structural processes for use in solid oxide fuel cells: a review vol.57, pp.2, 2018, https://doi.org/10.1007/s43207-020-00022-3
- Ruddlesden-Popper perovskites in electrocatalysis vol.7, pp.10, 2018, https://doi.org/10.1039/d0mh00477d
- Perspectives on Cathodes for Protonic Ceramic Fuel Cells vol.11, pp.12, 2018, https://doi.org/10.3390/app11125363
- A review on cathode materials for conventional and proton-conducting solid oxide fuel cells vol.894, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2021.162458