응력 주입 층을 이용한 Kerf-less 웨이퍼링 기술 동향

  • 양현석 (한국기계연구원 부설 재료연구소) ;
  • 엄누시아 (한국기계연구원 부설 재료연구소) ;
  • 김지원 (한국기계연구원 부설 재료연구소) ;
  • 임재홍 (한국기계연구원 부설 재료연구소)
  • 발행 : 2018.06.30

초록

In the photovoltaics (PV) industry, there were many efforts to reduce the cost of production with high efficiency. The single most important cost factor in silicon technology is the wafer, accounting presently for ~35% of the module cost. it was already shown that the solar cell efficiency can be maintained up to the thickness range of $40-60{\mu}m$. The direct production of ultra-thin silicon wafer is very attractive and numerous different techniques, such as electrochemical process, ion implantation, and epitaxial growth, have been proposed and developed in many academic and industrial laboratories.

키워드

참고문헌

  1. Green MA, Emery K, Hishikawa Y, Warta W, DunlopED. "Solar cell efficiency tables (version 39)", Progressin Photovoltaics. Research and Applications 2012; 20:12-20 https://doi.org/10.1002/pip.2163
  2. Green MA, Emery K, Hishikawa Y, Warta W. "Solarcell efficiency tables (version 33). Progress in Photovoltaics", Research and Applications 2009; 17:85-94. https://doi.org/10.1002/pip.880
  3. Green MA, Emery K, Hishikawa Y, Warta W, DunlopED. "Solar cell efficiency tables (version 45)", Progressin Photovoltaics, Research and Applications 2015; 23:1-9. https://doi.org/10.1002/pip.2573
  4. PV Magazine. "First Solar raises bar for CdTe with21.5% efficiency record", 6 February 2015.
  5. Green, Martin A., et al. Solar cell efficiency tables (version 50). Progress in Photovoltaics, Research and Applications 25.7 (2017): 668-676. https://doi.org/10.1002/pip.2909
  6. Solibro Press Release. "Solibro beats world record forsolar cells", dated 12 June 2014.
  7. "ITRV 2014 International Technology Roadmap for Photovoltaic sixth edition" April 2015, revision July 2015
  8. Eiji Kobayashi, Yoshimi Watabe, "High efficiency heterojunction solar cells on n-type kerfless mono crystalline silicon wafers by epitaxial growth", APPLIED PHYSICS LETTERS 106, 223504 (2015) https://doi.org/10.1063/1.4922196
  9. W. Kaiser, Phys. Rev. 105, 1751 (1957). https://doi.org/10.1103/PhysRev.105.1751
  10. W. Kaiser, H. L. Frisch, and H. Reiss, Phys. Rev. 112, 1546 (1958). https://doi.org/10.1103/PhysRev.112.1546
  11. N. Nakamura, K. Hashimoto, E. Kobayashi, and Y. Watabe in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Frankfurt, Germany (2012), p. 1556.
  12. J.C. Hoogvliet, W.P. van Bennekom, "Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response", Electrochimica Acta 47 (2001) 599-611 https://doi.org/10.1016/S0013-4686(01)00793-9
  13. James D. Rachwal, "X-ray diffraction applications in thin films and (100) silicon substrate stress analysis, Scholar Commons Citation", (2010), p44-p46
  14. Gary Richardson, "Measurement of residual stress in electrodeposited nickel films", Rochester Institute of Technology RIT Scholar Works, p40-p43
  15. M. Saitou, "Scaling behavior of internal stress in electrodeposited nickel thin films", JOURNAL OF APPLIED PHYSICS 104, 093518 (2008) https://doi.org/10.1063/1.3009336
  16. W Qin, T Nagase, "Lattice distortion and its effects on physical properties of nanostructured materials", JOURNAL OF PHYSICS: CONDENSED MATTER, J. Phys.: Condens. Matter 19 (2007) 236217 (8pp) https://doi.org/10.1088/0953-8984/19/23/236217
  17. V. L. indenbom, V. M. Kaganer, "X-Ray Analysis of Internal Stresses in Crystals II. Lattice Distortions Due to Residual Strains in Crystals Grown from Melts", PSS,Volume 122, Issue 1 16 November (1990) Pages 97-109
  18. M. Hecker, E. Thiele, C. Holste, "X-ray diffraction analysis of internal stresses in the dislocation structure of cyclically deformed nickel single crystals", M. Hecker et al./Materials Science and Engineering A 234-236 (1997) 806&809 https://doi.org/10.1016/S0921-5093(97)00370-5
  19. W Qin, T Nagase, "Lattice distortion and its effects on physical properties of nanostructured materials", JOURNAL OF PHYSICS: CONDENSED MATTER, J. Phys.: Condens. Matter 19 (2007) 236217 (8pp) https://doi.org/10.1088/0953-8984/19/23/236217
  20. V. L. indenbom, V. M. Kaganer, "X-Ray Analysis o f Internal Stresses in Crystals II. Lattice Distortions Due to Residual Strains in Crystals Grown from Melts", PSS,Volume 122, Issue 1 16 November (1990) Pages 97-109
  21. M. Hecker, E. Thiele, C. Holste, "X-ray diffraction analysis of internal stresses in the dislocation structure of cyclically deformed nickel single crystals", M. Hecker et al./Materials Science and Engineering A 234-236 (1997) 806&809 https://doi.org/10.1016/S0921-5093(97)00370-5
  22. James D. Rachwal. "X-ray diffraction applications in thin films and (100) silicon substrate stress analysis"
  23. Suo, Z. "Singularities interacting with interfaces and cracks". Inl. J. Solids Struct. (1989); MS 599.
  24. ZHIGANG Suo, JOHN W. HUTCHINSON. "STEADYSTATE CRACKING IN BRITTLE SUBSTRATES BENEATH ADHERENT FILMS". Int. J. Solids Structures (1989) ; Vol. 25, No. 11, pp. 1337-1353. https://doi.org/10.1016/0020-7683(89)90096-6
  25. M. D. DRORY, M. D. THOULESS, A. G. EVANS. (1988); Acta metall. Vol. 36, No. 8, pp. 2019-2028. https://doi.org/10.1016/0001-6160(88)90303-3
  26. Suo, Z, Hutchinson, J. W. "Interface crack between two elastic layers". Int. J. Fracture. (l989).
  27. Evans A. G, Hutchinson J. W. "On the mechanics of delamination and spalling in compressed films". Int. J. Solids Struct. (1984); 20,455-466 https://doi.org/10.1016/0020-7683(84)90012-X
  28. Joost Vlassak, Thin Film Mechanics, DEAS Harvard University, (2004); AP 298r Spring 2004
  29. Alireza Moridi, L.C Zhang, Mei Liu, "Residual stresses in thin film systems : Effects of lattice mismatch thermal mismatch and interface dislocations", IJSS 50, (2013) 3562-3569
  30. V. L. indenbom, V. M. Kaganer, "X-Ray Analysis of Internal Stresses in Crystals II. Lattice Distortions Due to Residual Strains in Crystals Grown from Melts", PSS,Vol 122, Issue 1. (1990) 16 November P97-109
  31. C. T. SUN, C. J. JIH. "ON STRAIN ENERGY RELEASE RATES FOR INTERFACIAL CRACKS IN BI-MATERIAL MEDIA". Enginecnng Fracture Mechanics Vol. 28, No. 1. (1987) pp. 13-20 https://doi.org/10.1016/0013-7944(87)90115-9
  32. Bedell, S. W., et al. "Layer transfer of bulk gallium nitride by controlled spalling." Journal of Applied Physics 122.2 (2017): 025103. https://doi.org/10.1063/1.4986646
  33. Bedell, Stephen W., et al. "Kerf-less removal of Si, Ge, and III-V layers by controlled spalling to enable low-cost PV technologies." IEEE Journal of Photovoltaics 2.2 (2012): 141-147. https://doi.org/10.1109/JPHOTOV.2012.2184267