References
- Fried, M. G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 1989, 10, 366. https://doi.org/10.1002/elps.1150100515
- Carey, J. Gel retardation. Methods Enzymol. 1991, 208, 103.
- Haq, I.; Ladbury, J. E.; Chowdhry, B. Z.; Jenkins, T. C.; Chaires, J. B. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J. Mol. Biol. 1997, 271, 244. https://doi.org/10.1006/jmbi.1997.1170
- Hu, S. H.; Weisz, K.; James, T. L.; Shafer, R. H. H-NMR studies on d(GCTTAAGC)2 and its complex with berenil. Eur. J. Biochem. 1992, 204, 31. https://doi.org/10.1111/j.1432-1033.1992.tb16602.x
-
Feigon, J.; Denny, W. A.; Leupin, W.; Kearns, D. R. Interactions of antitumor drugs with natural DNA:
$^1H$ NMR study of binding mode and kinetics. J. Med. Chem. 1984, 27, 450. https://doi.org/10.1021/jm00370a007 - Conte, M. R.; Jenkins, T. C.; Lane, A. N. Interaction of minor-groove-binding diamidine ligands with an asymmetric DNA duplex. NMR and molecular modelling studies. Eur. J. Biochem. FEBS 1995, 229, 433. https://doi.org/10.1111/j.1432-1033.1995.0433k.x
- Szabo, A.; Stolz, L.; Granzow, R. Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 1995, 5, 699. https://doi.org/10.1016/0959-440X(95)80064-6
- Baranovsky, S. F.; Bolotin, P. A.; Evstigneev, M. P.; Chernyshev, D. N. Interaction of ethidium bromide and caffeine with DNA in aqueous solution. J. Appl. Spectrosc. 2009, 76, 132. https://doi.org/10.1007/s10812-009-9139-5
- Larsen, R. W.; Jasuja, R.; Hetzler, R. K.; Muraoka, P. T.; Andrada, V. G.; Jameson, D. M. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys. J. 1996, 70, 443. https://doi.org/10.1016/S0006-3495(96)79587-5
- Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed.; Springer Science & Business Media: Boston, MA, 2006.
- Lee, S.; Huh, S. Measuring Fluorescence Anisotropy as One of Very Useful Analytical Methods to Obtain Detailed Information of the Complex Binding Interaction. Bull. Korean Chem. Soc. 2017, 38, 406. https://doi.org/10.1002/bkcs.11090
- Ameloot, M.; vandeVen, M.; Acuna, A. U.; Valeur, B. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 589. https://doi.org/10.1351/PAC-REP-11-11-12
- Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955. https://doi.org/10.1016/j.ejca.2005.05.009
- Nafisi, S.; Adelzadeh, M.; Norouzi, Z.; Sarbolouki, M. N. Curcumin binding to DNA and RNA. DNA Cell Biol. 2009, 28, 201. https://doi.org/10.1089/dna.2008.0840
- Burgos-Moron, E.; Calderon-Montano, J. M.; Salvador, J.; Robles, A.; Lopez-Lazaro, M. The dark side of curcumin. Int. J. Cancer 2010, 126, 1771.
- Li, X. L.; Hu, Y. J.; Mi, R.; Li, X. Y.; Li, P. Q.; Ouyang, Y. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol. Biol. Rep. 2013, 40, 4405. https://doi.org/10.1007/s11033-013-2530-6
- Koonammackal, M. V.; Nellipparambil, U. V.; Sudarsanakumar, C. Molecular dynamics simulations and binding free energy analysis of DNA minor groove complexes of curcumin. J. Mol. Model. 2011, 17, 2805. https://doi.org/10.1007/s00894-011-0954-2
- Kurien, B. T.; Dillon, S. P.; Dorri, Y.; D'Souza, A.; Scofield, R. H. Curcumin does not bind or intercalate into DNA and a note on the gray side of curcumin. Int. J. Cancer 2011, 128, 242. https://doi.org/10.1002/ijc.25290