DOI QR코드

DOI QR Code

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir (Gebze Technical University, Department of Environmental Engineering) ;
  • Topaloglu, Alikemal (Bulent Ecevit University, Department of Environmental Engineering)
  • Received : 2017.09.09
  • Accepted : 2018.02.27
  • Published : 2018.07.25

Abstract

The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

Keywords

Acknowledgement

Supported by : Scientific and Technological Research Council of Turkey (TUBITAK)

References

  1. A.P.H.A. (2005), Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, Washington, DC, U.S.A.
  2. Abeynayaka, A. and Visvanathan, C. (2011a), "Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater", Bioresource Technol., 102(9), 5345-5352. https://doi.org/10.1016/j.biortech.2010.11.079
  3. Abeynayaka, A. and Visvanathan, C. (2011b), "Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater", Bioresource Technol., 102(3), 2358-2366. https://doi.org/10.1016/j.biortech.2010.10.096
  4. Adham, S. and Gagliardo, P. (1998), "Membrane bioreactors for water repurification-Phase I", Desalination Research and Development Program Report No. 34; Project No. 1425-97-FC-81-30006; United States Department of Interior, Bureau of Reclamation, U.S.A.
  5. Ahmed, Z., Cho, J., Lim, B.R., Song, K.G. and Ahn, K.H. (2007), "Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor", J. Membr. Sci., 287(2), 211-218. https://doi.org/10.1016/j.memsci.2006.10.036
  6. Al-Halbouni, D., Traber, J., Lyko, S., Wintgens, T., Melin, T., Tacke, D. and Hollender, J. (2008) "Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena", Water Res., 42(6-7), 1475-1488. https://doi.org/10.1016/j.watres.2007.10.026
  7. Berube, P.R. and Hall, E.R. (2000), "Effects of elevated operating temperatures on methanol removal kinetics from synthetic kraft pulp mill condensate using a membrane bioreactor", Water Res., 34(18), 4359-4366. https://doi.org/10.1016/S0043-1354(00)00203-7
  8. Chang, I.S. and Lee, C.H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge systemthe effect of physiological states of activated sludge on membrane fouling", Desalination, 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3
  9. Chinnaraj, S., Jothilingam, M. and Jeganathan, S. (2014), "An evaluation of biofilm membrane bioreactor (Bf-Mbr)", IOSR-J. Mech. Civ. Eng., 11, 5-11.
  10. Cho, J., Song, K.G. and Ahn, K.H. (2005a), "The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: Unstirred batch cell test", Desalination, 183(1-3), 425-429. https://doi.org/10.1016/j.desal.2005.05.009
  11. Cho, J., Song, K.G., Yun, H., Ahn, K.H., Kim, J.Y. and Chung, T.H. (2005b), "Quantitative analysis of biological effect on membrane fouling in submerged membrane bioreactor", Water Sci. Technol., 51(6-7), 9-18.
  12. Choudhary, M.K. (2005), "Landfill leachate treatment using a thermophilic membrane bioreactor" Ph.D. Dissertation, Asian Institute of Technology, Thailand.
  13. Cicek, N., Franco, J.P., Suidan, M.T., Urbain, V. and Manem, J. (1999), "Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds", Water Environ. Res., 71(1), 61-74.
  14. Defrance, L., Jaffrin, M.Y., Gupta, B., Paullier, P. and Geaugey, W. (2000), "Contribution of various constituents of activated sludge to membrane bioreactor fouling", Bioresource Technol., 73(2), 105-112. https://doi.org/10.1016/S0960-8524(99)00163-7
  15. Drews, A. (2010), "Review: Membrane fouling in membrane bioreactors characterisation, contradictions, cause and cures", J. Membr. Sci., 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
  16. Duncan, J., Bokhary, A., Fatehi, P., Kong, F., Lin, H. and Liao, B. (2017), "Thermophilic membrane bioreactors: A review", Bioresource Technol., 243, 1180-1193. https://doi.org/10.1016/j.biortech.2017.07.059
  17. Eriksson, L. and Alm, B. (1991), "Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties", Water Sci. Technol., 24(7), 21-28.
  18. Farizoglu, B. and Keskinler, B. (2006), "Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR)", J. Membr. Sci., 279(1-2), 578-587. https://doi.org/10.1016/j.memsci.2005.12.050
  19. Farizoglu, B., Keskinler, B., Yildiz, E. and Nuhoglu, A. (2007), "Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR)", J. Hazard. Mater., 146(1-2), 399-407. https://doi.org/10.1016/j.jhazmat.2006.12.051
  20. Frolund, B., Griebe, T. and Nielsen, P.H. (1995), "Enzymatic activity in the activated sludge floc matrix", Appl. Microbiol. Biotechnol., 43(4), 755-761. https://doi.org/10.1007/BF00164784
  21. Gao, D., Liu, L., Liang, H. and Wu, W.M. (2011), "Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment", Crit. Rev. Biotechnol., 31(2), 137-152. https://doi.org/10.3109/07388551.2010.497961
  22. Grelier, P., Rosenberger, S. and Tazi-Pain, A. (2006), "Influence of sludge retention time on membrane bioreactor hydraulic performance", Proceedings of the International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea, August.
  23. Guibaud, G., Comte, S., Bordas, F., Dupuy, S. and Baudu, M. (2005), "Comparison of the complexation potential of extracellular polymeric substances (EPS) extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel", Chemosphere, 59(5), 629-638. https://doi.org/10.1016/j.chemosphere.2004.10.028
  24. Hosseinzadeh, H., Mehrnia, M.R. and Mostoufi, N. (2013), "Experimental study and modeling of fouling in immersed membrane bioreactor operating in constant pressure filtration", Math. Prob. Eng., 2013, 1-7.
  25. Iorhemen, O.T., Hamza, R.A. and Tay, Z.H. (2016), "Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling", Membranes, 6(2), 1-29.
  26. Ji, B., Yang, K., Chen, W., Wang, J. and Zhu, L. (2016), "Impacts of dissolved oxygen and initial sludge concentrations on aerobic stabilization of sewage sludge", Pol. J. Environ. Stud., 25(1), 153-157. https://doi.org/10.15244/pjoes/59564
  27. Ke, O. and Junxin, L. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335. https://doi.org/10.1016/S1001-0742(08)62422-5
  28. Khan, S.J., Visvanathan, C. and Jegatheesan, V. (2009), "Prediction of membrane fouling in MBR systems using empirically estimated specific cake resistance", Bioresource Technol., 100(23), 6133-6136. https://doi.org/10.1016/j.biortech.2009.06.037
  29. LaPara, T. and Alleman, J. (1999), "Thermophilic aerobic biological wastewater treatment", Wat. Res., 33(4), 895-908. https://doi.org/10.1016/S0043-1354(98)00282-6
  30. Lee, W., Kang, S. and Shin, H. (2003), "Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors", J. Membr. Sci., 216(1-2), 217-227. https://doi.org/10.1016/S0376-7388(03)00073-5
  31. Li, B. and Wu, G. (2014), "Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes", J. Environ. Res. Public Health, 11(4), 3553-3569. https://doi.org/10.3390/ijerph110403553
  32. Li, X., Gao, F., Hua, Z., Du, G. and Chen, G.J. (2005), "Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling", Sep. Purif. Technol., 46(1-2), 19-25. https://doi.org/10.1016/j.seppur.2005.04.003
  33. Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G. and Liss, S.N. (2001), "Surface properties of sludge and their role in bioflocculation and settleability", Water Res., 35(2), 339-350. https://doi.org/10.1016/S0043-1354(00)00277-3
  34. Liu, Q.S., Liu, Y., Tay, J.H. and Show, K.Y. (2005), "Responses of sludge flocs to shear strength", Process Biochem., 40, 3213-3217. https://doi.org/10.1016/j.procbio.2005.02.013
  35. Masse, A., Sperandio, M. and Cabassud, C. (2006), "Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time", Water Res., 40(10), 2405-2415. https://doi.org/10.1016/j.watres.2006.04.015
  36. Merlin, G., Omri, N., Gonze, E., Valette, E., Cauffet, G. and Henry, M. (2015), "Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment", Water Res., 83, 184-194. https://doi.org/10.1016/j.watres.2015.06.041
  37. Miyoshi, T., Tsuyuhara, T., Ogyu, R., Kimura, K. and Watanabe, Y. (2009), "Seasonal variations in membrane fouling in membrane bioreactors (MBRs) treating municipal wastewater", Water Res., 43(20), 5109-5118. https://doi.org/10.1016/j.watres.2009.08.035
  38. Nagwekar, P.R. (2014), "Removal of Organic Matter from Wastewater by Activated Sludge Process-Review", J. Sci. Eng. Technol. Res., 3(5), 1260-1263.
  39. Ng, H.Y. and Hermanowicz, S.W. (2005), "Membrane bioreactor operation at short solids retention times: Performance and biomass characteristics", Water Res., 39(6), 981-992. https://doi.org/10.1016/j.watres.2004.12.014
  40. Ouyang, K. and Liu, J. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335. https://doi.org/10.1016/S1001-0742(08)62422-5
  41. Pollice, A., Laera, G., Saturno, D. and Giordano, C. (2008), "Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage", J. Membr. Sci., 317(1-2), 65-70. https://doi.org/10.1016/j.memsci.2007.08.051
  42. Rojas, M.E.H., Van Kaam, R., Schetrite, S. and Albasi, C. (2005), "Role and variations of supernatant compounds in submerged membrane bioreactor fouling", Desalination, 179(1-3), 95-107. https://doi.org/10.1016/j.desal.2004.11.058
  43. Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M. and Schrotter, J.C. (2006), "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment", Water Res., 40(4), 710-720. https://doi.org/10.1016/j.watres.2005.11.028
  44. Salama, Y., Chennaoui, M., Sylla, A., Mountadar, M., Rihani, M. and Assobhei, O. (2016), "Characterization, structure and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: A review", Desalin. Water Treat., 57(35), 16220-16237. https://doi.org/10.1080/19443994.2015.1077739
  45. Sheng, G.P., Yu, H.Q and Li, X.Y. (2010), "Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review", Biotechnol. Adv., 28(6), 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  46. Siddiqui, F.A. and Field, R.W. (2016), "Fouling and cleaning of a tubular ultrafiltration ceramic membrane", Membr. Water Treat., 7(5), 433-449. https://doi.org/10.12989/mwt.2016.7.5.433
  47. Suvilampi, J. and Rintala, J. (2003), "Thermophilic aerobic wastewater treatment, process performance, biomass characteristics and effluent turbidity", Rev. Environ. Sci. Biotechnol., 2(1), 35-51. https://doi.org/10.1023/B:RESB.0000022959.46025.9a
  48. Tchobanoglous, G. and Burton, F.L. (1991), Wastewater Engineering, 3rd ed., McGraw Hill Inc., New York, U.S.A.
  49. Tinggang, L., Renbi, B. and Junxin, L. (2008), "Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm", J. Biotechnol., 135(1), 52-57. https://doi.org/10.1016/j.jbiotec.2008.02.011
  50. Trussell, R.S., Merlo, R.P., Hermanowicz, S.W. and Jenkins, D. (2006), "The effect of organic 4 loading on process performance and membrane fouling in a submerged membrane 5 bioreactor treating municipal wastewater", Water Res., 40(14), 2675-2683. https://doi.org/10.1016/j.watres.2006.04.020
  51. Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A. and Hirata, A. (2003), "Extracellular polymeric substances responsible for bacterial adhesion onto solid surface", FEMS Microbiol. Lett., 223(2), 287-292. https://doi.org/10.1016/S0378-1097(03)00399-9
  52. Van Den Broeck, R., Van Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., van der Graaf, J.H.J.M., Van Lier, J.B., Van Impe, J.F.M. and Smets, I.Y. (2012), "The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)", J. Membr. Sci., 401, 48-55.
  53. Visvanathan, C., Choudhary, M.K., Mantalbo, M.T. and Jegatheesan, V. (2007), "Landfill leachate treatment using thermophilic membrane bioreactor", Desalination, 204(1-3), 8-16. https://doi.org/10.1016/j.desal.2006.02.028
  54. Vogelaar, J.C.T., Van Lier, J., Klapwijk, B., de Vries, M. and Lettinga, G. (2002a), "Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors origin of effluent colloidal COD", Appl. Microbiol. Biotechnol., 59(1), 105-111. https://doi.org/10.1007/s00253-002-0977-9
  55. Vogelaar, J.C.T., Van Lier, J., Klapwijk, B., de Vries, M. and Lettinga, G. (2002b), "Mesophilic and thermophilic activated sludge reactors-origin of effluent colloidal material", Water Res., 36, 1869-1879. https://doi.org/10.1016/S0043-1354(01)00397-9
  56. Wilen B.M. and Balmer P. (1999), "The effect of dissolved concentration on the structure, size and size distribution of activated sludge flocs", Water Res., 33(2), 391-400. https://doi.org/10.1016/S0043-1354(98)00208-5
  57. Wilen, B.M., Jin, B. and Lant, P. (2003), "The influence of key chemical constituents in activated sludge on surface and flocculating properties", Water Res., 37(9), 2127-2139. https://doi.org/10.1016/S0043-1354(02)00629-2
  58. Wu, B. and Fane, A.G. (2012), "Microbial relevant fouling in membrane bioreactors: Influencing factors, characterization and fouling control", Membranes, 2(3), 565-584. https://doi.org/10.3390/membranes2030565
  59. Xiu-Fen, L., Yan-Jun, L., He, L., Zhao-Zhe, H., Guo-Cheng, D. and Jian, C. (2008), "Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor", Sep. Purif. Technol., 59(1), 26-33. https://doi.org/10.1016/j.seppur.2007.05.024
  60. Yildiz, E., Keskinler, B., Pekdemir, T., Akay, G. and Nuhoglu, A. (2005), "High strengthwastewater treatment in a jet loopmembrane bioreactor: Kinetics and performance evaluation", Chem. Eng. Sci., 60(4), 1103-1116. https://doi.org/10.1016/j.ces.2004.09.071
  61. Yu, H., Wang, Z., Wu, Z. and Zhu, C. (2016), "Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: Performance, sludge characteristics and microbial community", Scientific Reports, 6, 1-10. https://doi.org/10.1038/s41598-016-0001-8
  62. Zhu, L., Zhou, J., Lv, M., Yu, H., Zhao, H. and Xu, X. (2015), "Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE", Chemosphere, 121, 26-32. https://doi.org/10.1016/j.chemosphere.2014.10.053

Cited by

  1. Mass and Heat Transfer Coefficients in a Thermophilic Membrane Distillation Bioreactor vol.44, pp.9, 2018, https://doi.org/10.1002/ceat.202000338