DOI QR코드

DOI QR Code

A Practical Method for Efficient Extraction of the Rotational Part of Dynamic Deformation

동적 변형의 회전 성분을 효율적으로 추출하기 위한 실용적 방법

  • Choi, Min Gyu (Dept. of Computer Science, Kwangwoon University)
  • 최민규 (광운대학교 컴퓨터과학과)
  • Received : 2018.01.11
  • Accepted : 2018.02.20
  • Published : 2018.02.20

Abstract

This paper presents a practical method to efficiently extract the rotational part of a $3{\times}3$ matrix that changes continuously in time. This is the key technique in the corotational FEM and the shape matching deformation popular in physics-based dynamic deformation. Recently, in contrast to the traditional polar decomposition methods independent of time, an iterative method was proposed that formulates the rotation extraction in a physics-based way and exploits an incremental representation of rotation. We develop an optimization method that reduces the number of iterations under the assumption that the maximum magnitude of the incremental rotation vector is limited within ${\pi}/2$. Realistic simulation of dynamic deformation employs a sufficiently small time step, and thus this assumption is not problematic in practice. We demonstrate the efficiency and practicality of our method in various experiments.

본 논문에서는 시간에 따라 연속적으로 변하는 $3{\times}3$ 행렬의 회전 성분을 효율적으로 추출하는 실용적인 방법을 제안한다. 이는 물리기반 동적 변형을 위하여 널리 사용되는 공회전 유한 요소법이나 형상 맞춤 변형에서 매우 중요한 기술이다. 최근 극분해를 사용하는 시간 독립적인 기존 방법들과 달리 회전행렬 추출을 물리적으로 공식화한 후, 점진적 회전 표현법을 이용하는 반복법이 제안되었다. 본 논문에서는 점진적 회전 벡터의 최대 회전각을 ${\pi}/2$ 이내로 제한함으로써 반복 횟수를 줄이는 최적화 기법을 개발한다. 사실적인 동적 변형 시뮬레이션에서는 충분히 작은 시간 간격을 사용하기 때문에 이러한 제한은 실용적으로 문제가 되지 않는다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

Keywords

References

  1. M. Hauth and W. Strasser, "Corotational simulation of deformable solids", Journal of WSCG, Vol. 12, pp. 2-9.
  2. M. Muller and M. Gross, "Interactive virtual materials", Graphics Interface, pp. 239-246, 2004.
  3. M. G. Choi and J. Lee, "As-rigid-as- possible solid simulation with oriented particles", Computers and Graphics, Vol. 70, pp. 1-7, 2018. https://doi.org/10.1016/j.cag.2017.07.027
  4. M. Macklin, M. Müller, N. Chentanez, and T. Y. Kim, "Unified particle physics for real-time applications", ACM Transactions on Graphics, Vol. 33, No. 4, Article 153, 2014.
  5. M. Muller and N. Chentanez, "Solid simulation with oriented particles", ACM Transactions on Graphics, Vol. 30, No. 4, Article 92, 2011.
  6. M. Muller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless deformations based on shape matching", ACM Transactions on Graphics, Vol. 24, No. 3, pp. 471-478, 2005. https://doi.org/10.1145/1073204.1073216
  7. A. R. Rivers and D. L. James, "FastLSM: fast lattice shape matching for robust real-time deformations", Vol 26, No. 3, Article 82, 2007.
  8. O. Sorkine and M. Alexa, "As-rigid-as- possible surface modeling", Proc. Eurographics Symposium on Geometry Processing 2007, pp. 109-116, 2007.
  9. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, "Projective dynamics: fusing constraint projections for fast simulation", ACM Transactions on Graphics, Vol. 33, No. 4, Article 154, 2014.
  10. R. Narain, M. Overby, and G. E. Brown, "ADMM$\supseteq$ projective dynamics: fast simulation of general constitutive models", Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2016, pp. 21-28, 2016.
  11. H. Wang, "A chebyshev semi-iterative approach for accelerating projective and position-based dynamics", ACM Transactions on Graphics, Vol. 34, No. 6, Article 246, 2015.
  12. G. Wahba, "A least squares estimate of satellite attitude", SIAM Review, Vol. 7, No. 3, pp. 409, 1965.
  13. S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns," IEEE Pattern Analysis and Machine Intelligence, Vol. 13, No. 4, pp. 376-380, 1991. https://doi.org/10.1109/34.88573
  14. J. L. Farrell, J. C. Stuelpnagel, R. H. Wessner and J. R. Velman, "A least squares estimate of satellite attitude", SIAM Review, Vol. 8, No. 3, pp. 384-386, 1966. https://doi.org/10.1137/1008080
  15. G. Irving, J. Teran, and R. Fedkiw, "Invertible finite elements for robust simulation of large deformation", Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2004, pp. 131-140, 2004.
  16. O. Civit-Flores and A. Susin, "Robust treatment of degenerate elements in interactive corotational FEM simulations", Computer Graphics Forum, Vol. 33, No. 6, pp. 298-309, 2014. https://doi.org/10.1111/cgf.12351
  17. M. Muller, J. Bender, N. Chentanez, and M. Macklin, "A robust method to extract the rotational part of deformations", Proc. ACM Motion in Games 2016, pp. 55-60, 2016.
  18. H. Goldstein, Classical Mechanics, Addison-Wesley, 1983.