DOI QR코드

DOI QR Code

Effect of electrochemical treatment on consolidation of soft clay

  • Li, Xiaobing (College of Architecture and Civil Engineering, Wenzhou University) ;
  • Yuan, Guohui (College of Architecture and Civil Engineering, Wenzhou University) ;
  • Fu, Hongtao (College of Architecture and Civil Engineering, Wenzhou University) ;
  • Wang, Jun (College of Architecture and Civil Engineering, Wenzhou University) ;
  • Cai, Yuanqiang (College of Architecture and Civil Engineering, Wenzhou University)
  • Received : 2017.03.22
  • Accepted : 2018.01.03
  • Published : 2018.07.20

Abstract

In this study, a method of electrochemical consolidation is applied. This method utilizes electro-osmosis, which is an effective ground improvement technique for soft clays, and soil treatment using lime, which is the oldest traditional soil stabilizer. The mechanism of lime treatment for soil involves cation exchange, which leads to the flocculation and agglomeration. Five representative laboratory tests-an electro-osmotic test and four electrochemical tests with various proportions of lime-were performed on dredged marine clay. The objectives of this study are to investigate the effect of electrochemical treatment and to determine the optimum dose for optimal consolidation performance of dredged marine clay. The results show that a better consolidation effect was achieved in terms of current, temperature, and vane shear strength by using electrochemical treatment. The best results were observed for the electrochemical test using 4% lime content.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alshawabkeh, A.N., Sheahan, T.C. and Wu, X. (2004), "Coupling of electrochemical and mechanical processes in soils under DC fields", Mech. Mater., 36(5-6), 453-465. https://doi.org/10.1016/S0167-6636(03)00071-1
  2. Asavadorndeja, P. and Glawe, U. (2005), "Electrokinetic strengthening of soft clay using the anode depolarization method", Bull. Eng. Geol. Environ., 64(3), 237-245. https://doi.org/10.1007/s10064-005-0276-7
  3. Bjerrum, L., Moum, J. and Eide, O. (1967), "Application of electro-osmosis to a foundation problem in a Norwegian quick clay", Geotechnique, 17(3), 214-235. https://doi.org/10.1680/geot.1967.17.3.214
  4. Burnotte, F., Lefebvre, G. and Grondin, G. (2004), "A case record of electroosmotic consolidation of soft clay with improved soilelectrode contact", Can. Geotech. J., 41(6), 1038-1053. https://doi.org/10.1139/t04-045
  5. Cai, Y., Qiao, H., Wang, J., Geng, X., Wang, P. and Cai, Y. (2017), "Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading", Eng. Geol., 222, 10-19. https://doi.org/10.1016/j.enggeo.2017.03.020
  6. Casagrande, L. (1952), "Electro-osmotic stabilization of soils", J. Boston Soc. Civ. Eng., 39(1), 51-83.
  7. Chai, Z., Zhang, Y. and Scheuermann, A., (2016), "Study of physical simulation of electrochemical modification of clayey rock", Geomech. Eng., 11(2), 197-209. https://doi.org/10.12989/gae.2016.11.2.197
  8. Chappell, B.A. and Burton, P.L. (1975), "Electro-osmosis applied to unstable embankment", J. Geotech. Eng., 101(8), 733-740.
  9. Chew, S.H., Karunaratne, G.P., Kuma, V.M., Lim, L.H., Toh, M.L. and Hee, A.M. (2004), "A field trial for soft clay consolidation using electric vertical drains", Geotext. Geomembr., 22(1-2), 17-35. https://doi.org/10.1016/S0266-1144(03)00049-9
  10. Chien, S.C., Teng, F.C. and Ou, C.Y. (2015), "Soil improvement of electroosmosis with the chemical treatment using the suitable operation process", Acta Geotech., 10(6), 813-820. https://doi.org/10.1007/s11440-014-0319-y
  11. Chu, J., Yan, S.W. and Yang, H. (2000), "Soil improvement by the vacuum preloading method for an oil storage station", Geotechnique, 50(6), 625-632. https://doi.org/10.1680/geot.2000.50.6.625
  12. Corwin, D.L. and Lesch, S.M. (2005), "Apparent soil electrical conductivity measurements in agriculture", Comput. Electron. Agric., 46(1-3), 11-43. https://doi.org/10.1016/j.compag.2004.10.005
  13. Estabragh, A.R., Naseh, M. and Javadi, A.A. (2014), "Improvement of clay soil by electro-osmosis technique", Appl. Clay Sci., 95, 32-36. https://doi.org/10.1016/j.clay.2014.03.019
  14. Fetzer, C.A. (1967), "Electro-osmotic stabilization of West Branch Dam", J. Soil Mech. Found. Div., 93(4), 85-106.
  15. Fu, H., Cai, Y., Wang, J. and Wang, P. (2017), "Experimental study on the combined application of vacuum preloading-variablespacing electro-osmosis to soft ground improvement", Geosynth., 24(1), 72-81. https://doi.org/10.1680/jgein.16.00016
  16. Fu, H., Fang, Z., Wang, J., Chai, J., Cai, Y., Geng, X., Jin, J. and Jin, F. (2018), "Experimental comparison of electro-osmotic consolidation of wenzhou dredged clay sediment using intermittent current and polarity reversal", Mar. Georesour. Geotechnol., 36(1),131-138 https://doi.org/10.1080/1064119X.2017.1326992
  17. Gray, D.H. (1970), "Electrochemical hardening of clay soils", Geotechnique, 20(1), 81-93. https://doi.org/10.1680/geot.1970.20.1.81
  18. Gray, D.H. and Schlocker, J. (1969), "Electrochemical alteration of clay soils", Clay. Clay Miner., 17(5), 309-322. https://doi.org/10.1346/CCMN.1969.0170508
  19. Jayasekera, S. (2015), "Electrokinetics to modify strength characteristics of soft clayey soils: A laboratory based investigation", Electrochimica Acta, 181, 39-47. https://doi.org/10.1016/j.electacta.2015.06.064
  20. Jones, C.J.F.P., Lamont-Black, J. and Glendinning, S. (2011), "Electrokinetic geosynthetics in hydraulic applications", Geotext. Geomembr., 29(4), 381-390. https://doi.org/10.1016/j.geotexmem.2010.11.011
  21. Le Runigo, B., Cuisinier, O., Cui, Y.J., Ferber, V. and Deneele, D. (2009), "Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching", Can. Geotech. J., 46(11), 1243-1257. https://doi.org/10.1139/T09-061
  22. Lee, J.K. and Shang, J.Q. (2011), "Influencing factors on electrical conductivity of compacted kaolin clay", Geomech. Eng., 3(2), 131-151. https://doi.org/10.12989/gae.2011.3.2.131
  23. Lefebvre, G. and Burnotte, F. (2002), "Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes", Can. Geotech. J., 39(2), 399-408. https://doi.org/10.1139/t01-102
  24. Liu, F., Fu, H., Wang, J., Mi, W., Cai, Y. and Geng, X. (2017), "Influence of soluble salt on electro-osmotic consolidation of soft clay", Soil Mech. Found. Eng., 54(1), 49-55 https://doi.org/10.1007/s11204-017-9432-x
  25. Mallela, J., Von Quintus, P.E.H. and Smith, K.L. (2004), Consideration of Lime-Stabilized Layers in Mechanistic-Empirical Pavement Design, The National Lime Association, Arlington, Virginia, U.S.A.
  26. Mitchell, J.K. and Soga, K. (1993), Fundamentals of Soil Behaviour, John Wiley & Sons, Hoboken, New Jersey, U.S.A.
  27. Mohamedelhassan, E. and Shang, J.Q. (2001), "Effects of electrode materials and current intermittence in electroosmosis", Proc. Inst. Civ. Eng. Ground Improv., 5(1), 3-11.
  28. Mohamedelhassan, E. and Shang, J.Q. (2003), "Electrokineticsgenerated pore fluid and ionic transport in an offshore calcareous soil", Can. Geotech. J., 40(6), 1185-1199. https://doi.org/10.1139/t03-060
  29. Otsuki, N., Yodsudjai, W. and Nishida, T. (2007), "Feasibility study on soil improvement using electrochemical technique", Construct. Build. Mater., 21(5), 1046-1051. https://doi.org/10.1016/j.conbuildmat.2006.02.001
  30. Ou, C.Y., Chien, S.C. and Chang, H.H. (2009a), "Soil improvement using electroosmosis with the injection of chemical solutions: field tests", Can. Geotech. J., 46(6), 727-733. https://doi.org/10.1139/T09-012
  31. Ou, C.Y., Chien, S.C. and Wang, Y.G. (2009b), "On the enhancement of electroosmotic soil improvement by the injection of saline solutions", Appl. Clay Sci., 44(1-2), 130-136. https://doi.org/10.1016/j.clay.2008.12.014
  32. Ou, C.Y., Chien, S.C., Yang, C.C. and Chen, C.T. (2015), "Mechanism of soil cementation by electroosmotic chemical treatment", Appl. Clay Sci., 104, 135-142. https://doi.org/10.1016/j.clay.2014.11.020
  33. Ozkan, S., Gale, R.J. and Seals, R.K. (1999), "Electrokinetic stabilization of kaolinite by injection of Al and $PO_4\;^{3-}$ions", Proc. Inst. Civ. Eng. Ground Improv., 3(4), 135-144.
  34. Peng, J., Ye, H. and Alshawabkeh, A.N. (2015), "Soil improvement by electroosmotic grouting of saline solutions with vacuum drainage at the cathode", Appl. Clay Sci., 114, 53-60. https://doi.org/10.1016/j.clay.2015.05.012
  35. Rittirong, A., Douglas, R.S., Shang, J.Q. and Lee, E.C. (2008), "Electrokinetic improvement of soft clay using electrical vertical drains", Geosynth., 15(5), 369-381. https://doi.org/10.1680/gein.2008.15.5.369
  36. Shang, J.Q. (1997), "Zeta potential and electroosmotic permeability of clay soils", Can. Geotech. J., 34(4), 627-631. https://doi.org/10.1139/t97-28
  37. Shang, J.Q., Mohamedelhassan, E. and Ismail, M. (2004), "Electrochemical cementation of offshore calcareous soil", Can. Geotech. J., 41(5), 877-893. https://doi.org/10.1139/t04-030
  38. Wang, D., Kang, T., Han, W., Liu, Z. and Chai, Z. (2010), "Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock", Geomech. Eng., 2(3), 191-202. https://doi.org/10.12989/gae.2010.2.3.191
  39. Wang, J., Cai, Y., Ma, J., Chu, J., Fu, H., Wang, P. and Jin, Y. (2016), "Improved vacuum preloading method for consolidation of dredged clay-slurry fill", J. Geotech. Geoenviron. Eng., 142(11), 06016012 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001516
  40. Wang, J., Cai, Y., Ni, J., Geng, X. and Xu, F. (2018a), "Effect of sand on the vacuum consolidation of dredged slurry", Mar. Georesour. Geotechnol., 36(2), 238-244 https://doi.org/10.1080/1064119X.2017.1304473
  41. Wang, J., Fu, H., Liu, F., Cai, Y. and Zhou, J. (2018b), "Influence of the electro-osmosis activation time on vacuum electroosmosis consolidation of a dredged slurry", Can. Geotech. J., 55(1), 147-153 https://doi.org/10.1139/cgj-2016-0687
  42. Wang, J., Ma, J., Liu, F., Mi, W., Cai, Y., Fu, H. and Wang, P. (2016), "Experimental study on the improvement of marine clay slurry by electroosmosis-vacuum preloading", Geotext. Geomembr., 44(4), 615-622. https://doi.org/10.1016/j.geotexmem.2016.03.004
  43. Wang, J., Ni, J., Cai, Y., Fu, H. and Wang, P. (2017), "Combination of vacuum preloading and lime treatment for improvement of dredged fill", Eng. Geol., 227, 149-158 https://doi.org/10.1016/j.enggeo.2017.02.013
  44. Yong, R.N. and Ouhadi, V.R. (2007), "Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils", Appl. Clay Sci., 35(3-4), 238-249. https://doi.org/10.1016/j.clay.2006.08.009
  45. Zhou, J., Tao, Y.L., Xu, C.J., Gong, X.N. and Hu, P.C. (2015), "Electro-osmotic strengthening of silts based on selected electrode materials", Soil. Found., 55(5), 1171-1180. https://doi.org/10.1016/j.sandf.2015.09.017

Cited by

  1. Vacuum Preloading Combined with Intermittent Electro-Osmosis for Dredged Slurry Strengthening vol.43, pp.3, 2020, https://doi.org/10.1520/gtj20180234
  2. Experimental Study on the Effect of Additives on Drainage Consolidation in Vacuum Preloading Combined with Electroosmosis vol.24, pp.9, 2018, https://doi.org/10.1007/s12205-020-1900-6
  3. Effect of the pressurized duration on improving dredged slurry with air booster vacuum preloading vol.38, pp.8, 2018, https://doi.org/10.1080/1064119x.2019.1645250
  4. Effects of fly ash and slag content on the solidification of river-dredged sludge vol.39, pp.1, 2021, https://doi.org/10.1080/1064119x.2019.1677827
  5. Effect of water content on lime additive content in vacuum preloading with PVDs vol.39, pp.3, 2018, https://doi.org/10.1080/1064119x.2019.1699981