DOI QR코드

DOI QR Code

Research on Virtual Simulator Sickness Using Field of View Restrictor According to Human Factor levels

FOV Restrictor를 활용한 가상 멀미 저감 요소 기술연구

  • 김창섭 (한양대학교 컴퓨터.소프트웨어학과) ;
  • 김소연 (덕성여자대학교 심리학과) ;
  • 김광욱 (한양대학교 컴퓨터.소프트웨어학과)
  • Received : 2018.06.23
  • Accepted : 2018.07.04
  • Published : 2018.07.10

Abstract

Simulator sickness is one of the important side effect of virtual reality. Simulator sickness is influenced by various factors, and field of view (FOV) is one of them. The FOV is a viewing angle limited by the screen, and when the FOV is reduced, the simulator sickness is reduced, and the presence is lowered. Previous study developed a Dynamic FOV Restrictor (Center-fixed FOV Restrictor) to reduce simulator sickness while maintaining presence. It is a method that limits the FOV dynamically by reflecting the speed and angular velocity of the avatar. We also developed Eye-tracking Based Dynamic FOV Restrictor (Eye-tracking FOV Restrictor) by adding head rotations and eye movements. This study attempts to compare the simulator sickness and the presence of the No FOV Restrictor condition, the Center-fixed FOV Restrictor condition, and the Eye-tracking FOV Restrictor condition. The results showed that the simulator sickness of the Center-fixed FOV Restrictor condition is significantly lower than other two conditions. The results also showed that there were no significant differences in presence in three conditions. The interpretations and limitations of this study are discussed in this paper.

가상 멀미는 가상 현실의 대표적 부작용 중 하나로 다양한 요소에 의해 영향을 받는다. Field of view (FOV)는 그 중 대표적인 요소 중 하나로, FOV가 줄어들면 가상 멀미는 줄일 수 있으나 임장감 또한 낮아지는 것으로 알려져 왔다. 최근 연구에 따르면 임장감을 유지하면서 가상 멀미를 줄이기 위해 Dynamic FOV Restrictor (Center-fixed FOV Restrictor)가 제안되었으며, 아바타의 속도와 각속도를 반영하여 동적으로 FOV를 제한하였다. 본 연구 그룹에서는 여기에 머리의 회전과 눈의 움직임을 더하여 Eye-tracking Based Dynamic FOV Restrictor (Eye-tracking FOV Restrictor)를 제안하였다. 본 연구는 FOV Restrictor가 없는 조건과, Center-fixed FOV Restrictor조건, Eye-tracking FOV Restrictor조건의 가상 멀미와 임장감을 연구하였다. 본 연구 결과에 따르면 Center-fixed FOV Restrictor조건의 가상 멀미가 다른 두 조건의 가상 멀미 보다 낮은 것을 확인하였고, 세 조건에서 영장감에 차이가 없는 것을 확인하였다. 이러한 가상 멀미 저감 요소 기술에 대한 해석과 한계에 대하여 본 논문에서 논의하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. LaViola Jr, Joseph J. "A discussion of cybersickness in virtual environments." ACM SIGCHI Bulletin Vol. 32, No. 1, pp. 47-56, 2000.
  2. Kolasinski, Eugenia M. "Simulator Sickness in Virtual Environments." No. ARI-TR-1027. Army Research Institute for the Behavioral and Social Sciences Alexandria VA, 1995.
  3. Treisman, Michel. "Motion sickness: an evolutionary hypothesis." Science Vol. 197, No. 4302, pp. 493-495, 1977. https://doi.org/10.1126/science.301659
  4. Kennedy, Robert S., Kevin S. Berbaum, and Martin G. Smith. "Methods for correlating visual scene elements with simulator sickness incidence." Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 37, No. 18, pp. 1252-1256, 1993.
  5. Fowlkes, J. E., R. S. Kennedy, and M. G. Lilienthal. "Postural disequilibrium following training flights." Proceedings of the Human Factors Society Annual Meeting, Vol. 31, No. 5, pp. 488-491, 1987.
  6. Regan, E. C. "Side-effects of immersion virtual reality." Paper presented at the International Applied Military Psychology Symposium, 1993.
  7. Pausch, Randy, Thomas Crea, and Matthew Conway. "A literature survey for virtual environments: Military flight simulator visual systems and simulator sickness." Presence: Teleoperators & Virtual Environments, Vol. 1, No. 3, pp. 344-363, 1992. https://doi.org/10.1162/pres.1992.1.3.344
  8. Jerald, Jason. "The VR book: Human-centered design for virtual reality. " Morgan & Claypool, 2015.
  9. DiZio, Paul, and James R. Lackner. "Circumventing side effects of immersive virtual environments." HCI International, 1997.
  10. Maxwell, C. A. "Flicker science and the consumer." Information Display Vol. 8, pp. 7-7, 1992.
  11. Witmer, Bob G., and Michael J. Singer. "Measuring presence in virtual environments: A presence questionnaire." Presence: Teleoperators & Virtual Environments, Vol. 7, No. 3, pp. 225-240, 1998. https://doi.org/10.1162/105474698565686
  12. Seay, A. Fleming, David M. Krum, Larry Hodges, and William Ribarsky. "Simulator sickness and presence in a high field-ofview virtual environment." CHI'02 Extended Abstracts on Human Factors in Computing Systems, pp.784-785, 2002.
  13. Fernandes, Ajoy S., and Steven K. Feiner. "Combating VR sickness through subtle dynamic field-of-view modification." 2016 IEEE Symposium on 3D User Interfaces. pp. 201-210, 2016.
  14. K Keshavarz, Behrang, and Heiko Hecht. "Validating an efficient method to quantify motion sickness." Human Factors Vol. 53, No. 4, pp. 415-426, 2011. https://doi.org/10.1177/0018720811403736
  15. 김창섭, 이후철, 김민규, 전주희, & 김광욱. "가상 멀미 저감을 위한 사용자 눈 및 머리 움직임 추적 기반 FoV Restrictor의 구현 및 예비연구.", pp.2116-2118, 2017.
  16. Kennedy, Robert S., Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. "Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness." The International Journal of Aviation Psychology, Vol. 3, No. 3, pp. 203-220, 1993. https://doi.org/10.1207/s15327108ijap0303_3
  17. Shahal, Avner, Wanja Hemmerich, and Heiko Hecht. "Brightness and contrast do not affect visually induced motion sickness in a passively-flown fixed-base flight simulator." Displays, Vol. 44, pp. 5-14, 2016. https://doi.org/10.1016/j.displa.2016.05.007
  18. D'Amour, Sarah, Jelte E. Bos, and Behrang Keshavarz. "The efficacy of airflow and seat vibration on reducing visually induced motion sickness." Experimental brain research, Vol. 235, No. 9, pp. 2811-2820, 2017. https://doi.org/10.1007/s00221-017-5009-1
  19. Llorach, Gerard, Alun Evans, and Josep Blat. "Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system." Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 137-140 2014.
  20. Jerome, Christian J., and Bob Witmer. "Immersive tendency, feeling of presence, and simulator sickness: formulation of a causal model." Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 46, No. 26, pp. 2197-2201, 2002.
  21. Derogatis, Leonard R. "SCL-90-R: Administration, scoring & procedures manual-II for the (revised) version and other instruments of the psychopathology rating scale series." Clinical Psychometric Research, pp. 1-16, 1992.
  22. Golding, John F. "Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness." Brain Research Bulletin, Vol. 47, No. 5, pp. 507-516, 1998. https://doi.org/10.1016/S0361-9230(98)00091-4
  23. Boff, Kenneth R., and Janet E. Lincoln. "Engineering Data Compendium. Human Perception and Performance. Volume 3." Harry G Armstrong Aerospace Medical Research Lab Wright-Patterson Afb OH, 1988.
  24. Potter, Mary C., Brad Wyble, Carl Erick Hagmann, and Emily S.McCourt. "Detecting meaning in RSVP at 13 ms per picture." Attention, Perception, & Psychophysics, Vol. 76, No. 2, pp. 270-279, 2014. https://doi.org/10.3758/s13414-013-0605-z
  25. Kennedy, Robert S., Kay M. Stanney, and William P. Dunlap. "Duration and exposure to virtual environments: sickness curves during and across sessions." Presence: Teleoperators & Virtual Environments, Vol. 9, No. 5, pp. 463-472, 2000. https://doi.org/10.1162/105474600566952
  26. Kalman, Rudolph Emil. "A new approach to linear filtering and prediction problems." Journal of Basic Engineering Vol. 82, No. 1, pp. 35-45, 1960. https://doi.org/10.1115/1.3662552