DOI QR코드

DOI QR Code

Development of Deployment Test Equipment Suitable for Single Large Solar Panel

하나의 큰 태양전지판에 적합한 전개시험장치 개발

  • Received : 2018.04.06
  • Accepted : 2018.06.11
  • Published : 2018.07.01

Abstract

In this paper, we propose a new deployment test equipment that is characterized for the deployment test of single large solar panel with tape spring hinge. To perform the deployment test on ground, a device that takes gravity compensation into account should be used to create a zero gravity environment similar to that in orbit. We analyzed the advantages and disadvantages of the most commonly used deployment test equipment in the past through simple conceptual design, analysis, and tests to judge whether it is applicable to the deployment of the solar panel to be tested. A dummy frame was proposed to reduce the air drag effect during on-ground test and a self-aligning ball bearing and adjusting screws were applied to the deployment test equipment to solve the alignment problem with the gravity axis. And a horizontal bearing for radial movement applied to compensate for the change of the axis of the tape spring hinge. From these, we solved the problems of the conventional deployment test equipment by developing and verifying the new deployment test equipment characterized for the solar panel to be deployed in this paper.

본 논문에서는 하나의 큰 태양전지판 전개시험을 위해 새로운 전개시험장치를 제안하였다. 지상에서 전개시험을 수행하기 위해서는 궤도에서와 유사한 무중력 환경을 만들기 위해 중력 보상을 고려한 장치를 사용해야 한다. 기존에 주로 사용되는 전개시험장치를 시험하고자 하는 태양전지판 전개에 적용 가능한지 판단하기 위해 간단한 개념설계, 해석 그리고 시험 등을 통해 장단점을 분석하였다. 지상 시험의 문제점인 공기저항 문제를 해결하기 위해 더미 프레임을 제안하였으며 중력축과의 정렬 문제를 해결하기 위해 전개 장치에 자동조심 베어링 및 조절나사를 적용하였다. 그리고 테잎 스프링 힌지축의 변화를 보상하기 위해 반지름 방향 이동을 위한 수평 이동 베어링이 적용되었다. 이로부터 본 논문에서 전개하고자 하는 태양전지판에 특성화된 새로운 전개시험장치를 개발하고 검증함으로써 기존 전개시험장치의 문제점을 해결하였다.

Keywords

References

  1. Kim, K. W., and Park, Y., "Systematic Design of Tape Spring Hinges for Solar Array by Optimization Method Considering Deployment Performances," Aerospace Science and Technology, Vol. 46, 2015, pp.124-136. https://doi.org/10.1016/j.ast.2015.06.013
  2. Jeong, J. W., Yoo, Y. I., Lee, J. J., Lim, J. H., and Kim, K. W., "Development of a Tape Spring Hinge with a SMA Latch for a Satellite Solar Array Deployment Using the Independence Axiom," IERI Procedia, Vol. 1, 2012, pp.225-231. https://doi.org/10.1016/j.ieri.2012.06.035
  3. FABmbH, Z. A. R. M., and Fallturm, A., ZARM Drop Tower Bremen User Manual, dimensions, 2008.
  4. Mesland, D., Paris, D., Huijser, R., Lammertse, P., and Postema, R., "Ballistocraft: a Novel Facility for Microgravity Research, ESA bulletin. Bulletin ASE. European Space Agency, Vol 82, 1995, pp.7.
  5. Scherpen, J. M. A., Van der Kerk, B., Klaassens, J. B., Lazeroms, M., and Kan, S. Y., "Nonlinear Control for Magnetic Bearings in Deployment Test Rigs: Simulation and Experimental Results," Proceedings of the 37th IEEE Conference on Decision and Control, Vol. 3, 1998, pp.2613-2618.
  6. Auer, F., Combined electromagnetic suspension and propulsion for positioning with sub-micrometer accuracy, Delft University, 1995.
  7. Schultheiss, D., Gravity Compensation of Deployable Solar Arrays for Small Spacecraft, Department of Engineering, University of Cambridge, 2003.
  8. Fisher, A., and Pellegrino, S., "Interaction between Gravity Compensation Suspension System and Deployable Structure," Journal of Spacecraft and Rockets, Vol. 37, No. 1, 2000, pp.93-99. https://doi.org/10.2514/2.3531
  9. Penn, J., Johnson, C., Lewis, J., Dear, T., and Stewart, A., "GPM Solar Array Gravity Negated Deployment Testing," Proceedings of the 42nd Aerospace Mechanisms Symposium, 2014, pp.335-348.
  10. Franssen, R. H. M., Potze, W., de Jong, P., Fey, R. H. B., and Nijmeijer, H., "Large Amplitude Dynamic Behavior of Thrust Air Bearings: Modeling and Experiments," Tribology International, Vol. 109, 2017, pp.460-466. https://doi.org/10.1016/j.triboint.2016.12.024
  11. Choi, J. S., Moon, S. M., Yoon, Y. S., Kim, H. W., and Choi, S. B., "Deployable Communication Antenna Alignment for Geostationary Satellite," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 3, 2011, pp.279-288. https://doi.org/10.5139/JKSAS.2010.39.3.279
  12. Leipold, M., Eiden, M., Garner, C. E., Herbeck, L., Kassing, D., Niederstadt, T., ... and Seboldt, W. "Solar Sail Technology Development and Demonstration," Acta Astronautica, Vol. 52, No. 2, 2003, pp.317-326. https://doi.org/10.1016/S0094-5765(02)00171-6
  13. Jeong, S. Y., Lee, S. Y., Na, K. S., and Cho, K. D., "Comparison Study of Deployment Characteristics for Hinge Components by Solar Panel Deployment Tests for Small Satellites," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2014, pp.1152-1155.
  14. Watt, A. M., and Pellegrino, S., Rigid Deployable Solar Array, Department of Engineering, University of Cambridge, 2004.