DOI QR코드

DOI QR Code

저온에서 AlGaN/GaN HEMT의 전기적 특성 변화

Electrical Characteristics of AlGaN/GaN HEMT at Low Temperature

  • Kang, Min Sung (School of Semiconductor Science and Technology, and Chemical Engineering/ Semiconductor Physics Research Center, Chonbuk National University) ;
  • Park, Yong Woon (School of Semiconductor Science and Technology, and Chemical Engineering/ Semiconductor Physics Research Center, Chonbuk National University) ;
  • Choi, Cheol-Jong (School of Semiconductor Science and Technology, and Chemical Engineering/ Semiconductor Physics Research Center, Chonbuk National University) ;
  • Yang, Jeon Wook (School of Semiconductor Science and Technology, and Chemical Engineering/ Semiconductor Physics Research Center, Chonbuk National University)
  • 투고 : 2018.06.11
  • 심사 : 2018.06.21
  • 발행 : 2018.06.30

초록

AlGaN/GaN HEMT를 제작하여 상온에서 $-178^{\circ}C$의 저온에 이르기까지 트랜지스터의 전기적인 특성 변화를 연구하였다. 상온에서 264 mA/mm를 나타내던 게이트 길이 $2{\mu}m$인 HEMT의 드레인 전류는 온도의 감소에 따라 변화하여 $-108^{\circ}C$의 온도에서 388 mA/mm로 47%의 증가를 나타냈으며 최대 트랜스컨덕턴스는 121 mS/mm로 부터 183 mS/mm로 증가하였다. 또한 $-178^{\circ}C$의 온도에 이르기까지 -0.39 V의 문턱전압 변화를 보였다. 이러한 변화는 주로 상온에서부터 $-108^{\circ}C$의 온도에서 나타나고 있으며 온도감소에 따른 $720{\Omega}/sq.$ 로부터 $300{\Omega}/sq.$로 감소하는 면저항의 변화와 함께하고 있다.

Low temperature variation of electrical characteristics for AlGaN/GaN/HEMT was studied. To investigate the effect of temperatures, transistor was cool down to $-178^{\circ}C$ and electrical characteristics were measured. The drain current density of an AlGaN/GaN HEMT with a gate length of $2{\mu}m$ was increased from 264 mA/mm to 388 mA/mm and the maximum transconductance was increased from 105 mS/mm to 134 mS/mm by decreasing the temperature to $-108^{\circ}C$. Also, the threshold voltage was shifted -0.39 V with the temperature. The reason for the variations was seemed to the reduced channel resistance corresponding to the temperature. However, most of the variation of the electrical characteristics takes places above $-108^{\circ}C$.

키워드

참고문헌

  1. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J . Appl. Phys., vol.85, no.6 pp. 3223-3232, 1999. DOI:10.1063/1.369664
  2. C. W. Tsou, K. P. Wei, Y. W. Lian, and S. S. H. Hsu, "2.07-kV AlGaN/GaN Schottky barrier diodes on silicon with high Baliga's figure-of-merit," IEEE Electron Device Lett., vol. 37, no. 1, pp. 70-73, 2016. DOI:10.1109/LED.2015.2499267
  3. H. Okumura, "Present Status and Future Prospect of Widegap Semiconductor High-Power Devices', Jpn. J . Appl. Phys., vol. 45, no. 10A, pp. 7565-7586, 2006. DOI:10.1143/JJAP.45.7565
  4. A. Aminbeidokhti, S. Dimitrijev, A. K. Hanumanthappa, H. A. Moghadam, D. Haasmann, J. Han, Y. Shen, and X. Xu, "Gate-Voltage Independence of Electron Mobility in Power AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, vol.63, no.3, pp. 1013-1019, 2016. DOI:10.1109/TED.2016.2519533
  5. T.-S. Ko, D.-Y. Lin, C.-F. Lin, C.-W. Chang, J.-C. Zhang, S.-J. Tu, "High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer," J . Cryst. Growth, vol.464, pp.175-179, 2017.DOI:10.1016/j.jcrysgro.2016.12.023
  6. R. Menozzi, Gilberto A. Umana-Membreno, Brett D. Nener, Giacinta Parish, Giovanna Sozzi, Lorenzo Faraone, and Umesh K. Mishra, "Temperature-Dependent Characterization of AlGaN/GaN HEMTs: Thermal and Source/Drain Resistances," IEEE Trans. Device and Materials Reliability, vol.8, no.2, pp.255-264, 2008. DOI:10.1109/TDMR.2008.918960
  7. S. Vitanov, V. Palankovski, S. Maroldt, R. Quay, "High-temperature modeling of AlGaN/GaN HEMTs," Solid-State Electron., vol.54, pp.1105-1112, 2010. DOI:10.1016/j.sse.2010.05.026
  8. H. F.Huq, B. Polash, "Physics-based numerical simulation and device characterizations of AlGaN/GaN HEMTs with temperature effects," Microelectronics J ., vol.42 pp.923-928, 2011. DOI:10.1016/j.mejo.2011.02.003
  9. J. M. Tirado, J. L. Sanchez-Rojas, and J. I. Izpura, "Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices," IEEE Trans. Electron Devices, vol.54, no.3, pp.410-417, 2007. DOI:10.1109/TED.2006.890592
  10. X. Zhou, Z. Feng, L. Wang, Y. Wana, Y. Lv, S. Dun, S. Cai, "Impact of bulk traps in GaN buffer on the gate-lag transient characteristics of AlGaN/GaN HEMTs," Solid-State Electron., vol.100, pp.15-19, 2014 https://doi.org/10.1016/j.sse.2014.06.040
  11. N. Ramanan, B. Lee, and V. Misra, "Device Modeling for Understanding AlGaN/GaN HEMT Gate-Lag," IEEE Trans. Electron Devices, vol.61, no.6, pp.2012-2018, 2014. DOI:10.1016/j.sse.2014.06.040