DOI QR코드

DOI QR Code

Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm

유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화

  • 박지훈 (부산대학교 항공우주공학과 비행역학실험실) ;
  • 민찬오 (부산대학교 항공우주공학과 비행역학실험실) ;
  • 이대우 (부산대학교 항공우주공학과 비행역학실험실) ;
  • 장우혁 (국방과학연구소 제7기술연구본부)
  • Received : 2018.05.18
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).

Keywords

References

  1. Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J., "A survey on metaheuristics for stochastic combinatorial optimization", Natural Computing, 8(2), 2009, pp. 239-287. https://doi.org/10.1007/s11047-008-9098-4
  2. Grefenstette, J., Gopal, R., Rosmaita, B., & Van Gucht, D., "Genetic algorithms for the traveling salesman problem", In Proceedings of the first International Conference on Genetic Algorithms and their Applications, 1985, pp. 160-168.
  3. Holland, J. H., "Genetic algorithms", Scientific american, 267(1), 1992, pp. 66-73. https://doi.org/10.1038/scientificamerican0792-66
  4. Jin Kang Gue, "Genetic Algorithm and applications", 2nd Ed., Kyowoosa, Seoul, 2004, pp. 203-206.
  5. Minje Jun, & Eui-Young Chung, 2013, "On-Chip Crossbar Network Topology Synthesis using Mixed Integer Linear Programming", IEEK, 50(1), 2013, pp. 166-173.
  6. Pospichal, Petr, Jiri Jaros, and Josef Schwarz, "Parallel genetic algorithm on the cuda architecture", Applications of Evolutionary Computation, 2010, pp. 442-451.
  7. Schulz, C., Hasle, G., Brodtkorb, A. R., & Hagen, T. R., "GPU computing in discrete optimization. Part II: Survey focused on routing problems", EURO journal on transportation and logistics, 2013, 2(1-2), 159-186. https://doi.org/10.1007/s13676-013-0026-0