• 제목/요약/키워드: Scheduling optimization

검색결과 454건 처리시간 0.024초

MOPSO-based Data Scheduling Scheme for P2P Streaming Systems

  • Liu, Pingshan;Fan, Yaqing;Xiong, Xiaoyi;Wen, Yimin;Lu, Dianjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5013-5034
    • /
    • 2019
  • In the Peer-to-Peer (P2P) streaming systems, peers randomly form a network overlay to share video resources with a data scheduling scheme. A data scheduling scheme can have a great impact on system performance, which should achieve two optimal objectives at the same time ideally. The two optimization objectives are to improve the perceived video quality and maximize the network throughput, respectively. Maximizing network throughput means improving the utilization of peer's upload bandwidth. However, maximizing network throughput will result in a reduction in the perceived video quality, and vice versa. Therefore, to achieve the above two objects simultaneously, we proposed a new data scheduling scheme based on multi-objective particle swarm optimization data scheduling scheme, called MOPSO-DS scheme. To design the MOPSO-DS scheme, we first formulated the data scheduling optimization problem as a multi-objective optimization problem. Then, a multi-objective particle swarm optimization algorithm is proposed by encoding the neighbors of peers as the position vector of the particles. Through extensive simulations, we demonstrated the MOPSO-DS scheme could improve the system performance effectively.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화 (Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm)

  • 박지훈;민찬오;이대우;장우혁
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.54-60
    • /
    • 2018
  • This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).

골리앗 크레인의 공주행 거리와 와이어 교체 최소를 고려한 최적 블록 리프팅 계획 (Optimal Block Lifting Scheduling Considering the Minimization of Travel Distance at an Idle State and Wire Replacement of a Goliath Crane)

  • 노명일;이규열
    • 한국CDE학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Recently, a shipyard is making every effort to efficiently manage equipments of resources such as a gantry crane, transporter, and so on. So far block lifting scheduling of a gantry crane has been manually performed by a manager of the shipyard, and thus it took much time to get scheduling results and moreover the quality of them was not optimal. To improve this, a block lifting scheduling system of the gantry crane using optimization techniques was developed in this study. First, a block lifting scheduling problem was mathematically formulated as a multi-objective optimization problem, considering the minimization of travel distance at an idle state and wire replacement during block lifting. Then, to solve the problem, a meta-heuristic optimization algorithm based on the genetic algorithm was proposed. To evaluate the efficiency and applicability of the developed system, it was applied to an actual block lifting scheduling problem of the shipyard. The result shows that blocks can be efficiently lifted by the gantry crane using the developed system, compared to manual scheduling by a manager.

Optimal Power Scheduling in Multi-Microgrid System Using Particle Swarm Optimization

  • Pisei, Sen;Choi, Jin-Young;Lee, Won-Poong;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1329-1339
    • /
    • 2017
  • This paper presents the power scheduling of a multi-microgrid (MMG) system using an optimization technique called particle swarm optimization (PSO). The PSO technique has been shown to be most effective at solving the various problems of the economic dispatch (ED) in a power system. In addition, a new MMG system configuration is proposed in this paper, through which the optimal power flow is achieved. Both optimization and power trading methods within an MMG are studied. The results of implementing PSO in an MMG system for optimal power flow and cost minimization are obtained and compared with another attractive and efficient optimization technique called the genetic algorithm (GA). The comparison between these two effective methods provides very competitive results, and their operating costs also appear to be comparable. Finally, in this study, power scheduling and a power trading method are obtained using the MATLAB program.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

A Multi-objective Optimization Approach to Workflow Scheduling in Clouds Considering Fault Recovery

  • Xu, Heyang;Yang, Bo;Qi, Weiwei;Ahene, Emmanuel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.976-995
    • /
    • 2016
  • Workflow scheduling is one of the challenging problems in cloud computing, especially when service reliability is considered. To improve cloud service reliability, fault tolerance techniques such as fault recovery can be employed. Practically, fault recovery has impact on the performance of workflow scheduling. Such impact deserves detailed research. Only few research works on workflow scheduling consider fault recovery and its impact. In this paper, we investigate the problem of workflow scheduling in clouds, considering the probability that cloud resources may fail during execution. We formulate this problem as a multi-objective optimization model. The first optimization objective is to minimize the overall completion time and the second one is to minimize the overall execution cost. Based on the proposed optimization model, we develop a heuristic-based algorithm called Min-min based time and cost tradeoff (MTCT). We perform extensive simulations with four different real world scientific workflows to verify the validity of the proposed model and evaluate the performance of our algorithm. The results show that, as expected, fault recovery has significant impact on the two performance criteria, and the proposed MTCT algorithm is useful for real life workflow scheduling when both of the two optimization objectives are considered.