DOI QR코드

DOI QR Code

만장광상 중앙광체와 본광체의 광화작용과 생성환경

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan

  • 유현민 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과)
  • Yu, Hyunmin (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • 투고 : 2018.06.05
  • 심사 : 2018.06.21
  • 발행 : 2018.06.30

초록

만장광상은 옥천변성대 화전리층 내에 발달되었으며 열극충전형 동광체인 중앙 및 본광체와 철 스카른형 서부광체로 대분된다. 본 연구에서는 중앙 및 본광체에 대한 광상학적 연구를 수행하여 기존 서부광체 광화작용 특성과 비교하고자 한다. 중앙광체는 맥상조직이 두드러지며 자류철석과 황동석이 주를 이루는 반면, 본광체는 맥상, 괴상, 각력상 조직과 더불어 황철석, 유비철석, 황동석이 주로 산출된다. 이 밖에 섬아연석, 방연석, 자철석, 티탄철석, 금홍석, 석석, 철망간중석, 황석석 등이 수반된다. 스카른이 부분적으로 발달하며 석류석은 그로슐라 계열, 휘석은 헤덴버자이트 계열이 우세한 것으로 보아 대체로 환원환경에서 정출된 것으로 보인다. 중앙광체의 섬아연석-황석석과 본광체의 황철석-유비철석 광물공생군을 이용한 생성온도는 각각 $204-263^{\circ}C$, $383-415^{\circ}C$로서 중앙광체가 상대적으로 낮고, 황분압도 본광체에서 $10^{-6}-10^{-7}atm$로서 비교적 높고 중앙광체로 가면서 점차 감소한 것으로 보인다. 황화광물의 황동위원소조성은 중앙광체 4.6-7.9‰, 본광체 4.3-7.0‰로 상호 유사하며 주로 화성기원이지만 모암의 영향으로 약간 높게 나타난다. 광석광물의 종류와 조직 그리고 광화작용의 물리화학적 조건을 고려할 때 동광화작용이 발달한 본광체와 중앙광체는 잠두화성암에 대하여 각각 근지성과 원지성 광화작용의 특성을 나타낸 것으로 보이며, 스카른 철광상이 발달한 서부광체와는 서로 다른 열수계의 영향을 받아 생성된 것으로 여겨진다.

The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.

키워드

참고문헌

  1. Ahn, S.Y. and Shin, D.B. (2017) Mineralogy and genetic environments of the Seongdo Pb-Zn deposit, Goesan. Econmic and Environmental Geology, 50, 325-340 (in Korean with English abstract).
  2. Beaudoin, G. and Dupuis, C. (2009) Iron-oxide trace element fingerprinting of mineral deposit types. Exploring for iron oxide copper-gold deposits: Canada and global analogues, Short Course Volume, Geological Association of Canada Annual Meeting, Quebec City, 107-121.
  3. Bonazzi, P., Bindi, L., Bernardini, G., and Menchetti, S. (2003) A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kesterite series, $Cu_2FeSnS_4-Cu_2ZnSnS__4$. Canadian Mineralogist, 41, 639-647. https://doi.org/10.2113/gscanmin.41.3.639
  4. Cheong, C.S. and Kim, N.H. (2012) Review of radiometric ages for phanerozoic granitoids in southern Korean peninsula. Joural of the Petrological Society of Korea, 21, 173-192 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.173
  5. Choi, J.B. and Kim, S.J. (1991) Mineralogy and iron chemistry of garnets and clinopyroxenes in the skarn deposits, the Hambaek geosyncline belt, Korea. Journal of the Mineralogical Society of Korea, 4, 119-128.
  6. Chutas, N.I., Kress, V.C., Ghiorso, M.S., and Sack, R.O. (2008) A solution model for high-temperature $PbS-AgSbS_2-AgBiS_2$ galena. American Mineralogist, 93, 1630-1640. https://doi.org/10.2138/am.2008.2695
  7. Dare, S.A., Barnes, S.J., and Beaudoin, G. (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochimica et Cosmochimica Acta, 88, 27-50. https://doi.org/10.1016/j.gca.2012.04.032
  8. Dupuis, C. and Beaudoin, G. (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46, 319-335. https://doi.org/10.1007/s00126-011-0334-y
  9. Einaudi, M.T., Meinert, D.L., and Newberry, R.J. (1981) Skarn deposits. Economic Geology 75th Anniversary volume, 317-391.
  10. Foord, E.F. and Shawe, D.R. (1989) The Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts: A review and some new data from Colorado, California, and Pennsylvania. Canadian Mineralogist, 27, 363-382.
  11. Foord, E.E., Shawe, D.R., and Conklin, N.M. (1988) Coexisting galena, PbS (sub SS) and sulfosalts: Evidence for multiple episodes of mineralization in the Round Mountain and Manhattan gold districts, Nevada. Canadian Mineralogist, 26, 355-376.
  12. Hall, A.J. (1986) Pyrite-pyrrhotite redox reactions in nature. Mineralogical Magazine, 50, 223-229. https://doi.org/10.1180/minmag.1986.050.356.05
  13. Ishihara, S., Jin, M.S., and Kajiwara, Y. (2002) Sulfur content and isotopic ratio of Cambro-Ordovician carbonate rocks from South Korea: a possible source for Mesozoic magmatic-hydrothermal ore sulfur. Resource Geology, 52, 41-48. https://doi.org/10.1111/j.1751-3928.2002.tb00115.x
  14. Kim, K.H. and Shin, J.S. (1987) Stable isotope and fluid inclusion studies of the Manjang copper mine, South Korea. Journal of the Korean Institute of Mining Geology, 20, 169-177 (in Korean with English abstract).
  15. KMPC (Korea Mining Promotion Corporation) (1981) Ore deposits in Korea. 8, 94-95 (in Korean).
  16. KMPC (Korea Mining Promotion Corporation) (1990) Ore deposit in Korea. 12, 144-145 (in Korean).
  17. Kolodziejczyk, J., Prsek, J., Melfos, V., Voudouris, P.C., Maliqi, F., and Kozub-Budzyyn, G. (2015) Bismuth minerals from the Stan Terg deposit (Trepca, Kosovo). Neues Jahrbuch fur Mineralogie Abhandlungen, 192, 317-333. https://doi.org/10.1127/njma/2015/0288
  18. Kretschmar, V. and Scott, S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canadian Mineralogist, 14, 364-386.
  19. Lee, J.H. and Kim, J.H. (1972) Geological map of Korea; Goesan sheet (1:50,000), Geological Survey of Korea, Seoul Korea (in Korean).
  20. Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H., and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, 17, 87-101. https://doi.org/10.1016/j.gr.2009.04.012
  21. Lim, E.D., Yoo, B.C., and Shin, D.B. (2016) Skarnization and Fe mineralization at the Western orebody in the Manjang deposit, Goesan. Journal of the Mineralogical Society of Korea, 29, 141-153 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2016.29.3.141
  22. Meinert, L.D., Dipple, G.M., and Nicolescu, S. (2005) World skarn deposits. Economic Geology 100th Anniversary volume, 299-336.
  23. Na, C.K. (1994) Genesis of granitoid batholiths of Okchon Zone, Korea and its implications for crustal evolution. Ph.D. Thesis, Tsukuba University, Japan.
  24. Nadoll, P., Angerer, T., Mauk, J.L., French, D., and Walshe, J. (2014) The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
  25. Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E., and Box, S.E. (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic belt supergroup, United States. Economic Geology, 107, 1275-1292. https://doi.org/10.2113/econgeo.107.6.1275
  26. Nakamura, Y. and Shima, H. (1982) Fe and Zn partitioning between sphalerite and stannite. Joint Meeting of Society of Mining Geology Japan, Japanese Associations of Mineralogists, Petrologists and Economic Geology, and Journal of the Mineralogical Society of Japan, A-8. (abstracts).
  27. Newberry, R.J., Allegro, G.L., Cutler, S.E., Hagen-Leveille, J.H., Adams, D.D., Nicholson, L.C., Weglarz, T.B., Bakke, A.A., Clautice, K.H., Coulter, G.A., Ford, M.J., Myers, G.L., and Szumigala, D.J. (1997) Skarn deposits of Alaska. Economic Geology Monograph 9, 355-395.
  28. Palinka, S.S., Palinka, L.A., Renca, C., Spangenberg, J.E., Luders, V., Molnar, F., and Malaqi, G. (2013) Metallogenic model of the Trepca Pb-Zn-Ag skarn deposit, Kosovo: Evidence from fluid inclusions, rare earth elements, and stable isotope data. Economic Geology, 108, 135-162. https://doi.org/10.2113/econgeo.108.1.135
  29. Petruk, W. (1973) Tin sulfides from the deposits of Brunswick tin mines. Canadian Mineralogist, 12, 46-54.
  30. Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, 61, 633-677. https://doi.org/10.2138/rmg.2006.61.12
  31. Sharp, T.G. and Buseck, P.R. (1993) The distributions of Ag and Sb in galena: Inclusions vs. solid solution. American Mineralogist, 78, 85-95.
  32. Shimizu, M., Shimizu, M., and Tsunoda, K. (2008) Physicochemical environments of formation of tin sulfide-bearing deposits in Japan. Far Eastern Studies, 7, 23-40.
  33. Shu, Q., Lai, Y., Sun, Y., Wang, C., and Meng, S. (2013) Ore genesis and hydrothermal evolution of the Baiyinnuo'er zinc-lead skarn deposit, northeast China: evidence from isotopes (S, Pb) and fluid inclusions. Economic Geology, 108, 835-860. https://doi.org/10.2113/econgeo.108.4.835
  34. Strauss, H., Banerjee, D.M., and Kumar, V. (2001) The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater-evidence from the cyclic Hanseran evaporites, NW India. Chemical Geology, 175, 17-28. https://doi.org/10.1016/S0009-2541(00)00361-2
  35. Vaughan, D.J. and Craig, J.R. (1997) Sulfide ore mineral stabilities, morphologies, and intergrowth textures. In: Barnes, H.L., (Ed.), Geochemistry of Hydrothermal Ore Deposits, third ed., John Wiley & Sons, 367-434.

피인용 문헌

  1. Geochemical and Isotopic Compositions and Geothermometry of Thermal Waters in the Magumsan Area, South Korea vol.11, pp.9, 2018, https://doi.org/10.3390/w11091774
  2. 지중환경 내 지질 매체가 질산염의 탈질 반응에 미치는 영향에 대한 고찰 vol.25, pp.2, 2020, https://doi.org/10.7857/jsge.2020.25.s1.016
  3. Regional variations of sulfur isotope compositions for metallic deposits in South Korea vol.71, pp.3, 2021, https://doi.org/10.1111/rge.12259